• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inferência estocástica e modelos de mistura de distribuições

Vargas, Regis Nunes January 2011 (has links)
Neste trabalho apresentamos os resultados de consistência e normalidade assintótica para o estimador de máxima verossimilhança de uma Cadeia de Markov ergódica. Além disso apresentaremos os Modelos de Mistura de Distribuição Independente e um dos casos de Modelos de Mistura Dependente: os Modelos Ocultos de Markov. Estimaremos os parâmetros destes modelos a partir do método da máxima verossimilhança e abordaremos o critério de seleção através do cálculo do AIC e BIC. / This paper presents the results of consistency and asymptotic normality for the maximum likelihood estimator of the ergodic Markov chain. In addition we present the Independent Mixture Models and one case of Dependent Mixture Models: the Hidden Markov Models. We estimate the parameters of these models from the maximum likelihood method and discuss the selection criteria by calculating the AIC and BIC.
2

Inferência estocástica e modelos de mistura de distribuições

Vargas, Regis Nunes January 2011 (has links)
Neste trabalho apresentamos os resultados de consistência e normalidade assintótica para o estimador de máxima verossimilhança de uma Cadeia de Markov ergódica. Além disso apresentaremos os Modelos de Mistura de Distribuição Independente e um dos casos de Modelos de Mistura Dependente: os Modelos Ocultos de Markov. Estimaremos os parâmetros destes modelos a partir do método da máxima verossimilhança e abordaremos o critério de seleção através do cálculo do AIC e BIC. / This paper presents the results of consistency and asymptotic normality for the maximum likelihood estimator of the ergodic Markov chain. In addition we present the Independent Mixture Models and one case of Dependent Mixture Models: the Hidden Markov Models. We estimate the parameters of these models from the maximum likelihood method and discuss the selection criteria by calculating the AIC and BIC.
3

Inferência estocástica e modelos de mistura de distribuições

Vargas, Regis Nunes January 2011 (has links)
Neste trabalho apresentamos os resultados de consistência e normalidade assintótica para o estimador de máxima verossimilhança de uma Cadeia de Markov ergódica. Além disso apresentaremos os Modelos de Mistura de Distribuição Independente e um dos casos de Modelos de Mistura Dependente: os Modelos Ocultos de Markov. Estimaremos os parâmetros destes modelos a partir do método da máxima verossimilhança e abordaremos o critério de seleção através do cálculo do AIC e BIC. / This paper presents the results of consistency and asymptotic normality for the maximum likelihood estimator of the ergodic Markov chain. In addition we present the Independent Mixture Models and one case of Dependent Mixture Models: the Hidden Markov Models. We estimate the parameters of these models from the maximum likelihood method and discuss the selection criteria by calculating the AIC and BIC.

Page generated in 0.0601 seconds