• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Static code metrics vs. process metrics for software fault prediction using Bayesian network learners

Stanic, Biljana January 2015 (has links)
Software fault prediction (SFP) has an important role in the process of improving software product quality by identifying fault-prone modules. Constructing quality models includes a usage of metrics that describe real world entities defined by numbers or attributes. Examining the nature of machine learning (ML), researchers proposed its algorithms as suitable for fault prediction. Moreover, information that software metrics contain will be used as statistical data necessary to build models for a certain ML algorithm. One of the most used ML algorithms is a Bayesian network (BN), which is represented as a graph, with a set of variables and relations between them. This thesis will be focused on the usage of process and static code metrics with BN learners for SFP. First, we provided an informal review on non-static code metrics. Furthermore, we created models that contained different combinations of process and static code metrics, and then we used them to conduct an experiment. The results of the experiment were statistically analyzed using a non-parametric test, the Kruskal-Wallis test. The informal review reported that non-static code metrics are beneficial for the prediction process and its usage is highly recommended for industrial projects. Finally, experimental results did not provide a conclusion which process metric gives a statistically significant result; therefore, a further investigation is needed.
2

Recomenda??o de algoritmos de aprendizado de m?quina para predi??o de falhas de software por meio de meta-aprendizado

Alves, Luciano 23 September 2016 (has links)
Submitted by PPG Ci?ncia da Computa??o (ppgcc@pucrs.br) on 2018-10-04T18:59:57Z No. of bitstreams: 1 LUCIANO_ ALVES_DIS.pdf: 1077045 bytes, checksum: ddcbf3be03bec1c7a82f3e07252439a0 (MD5) / Rejected by Sheila Dias (sheila.dias@pucrs.br), reason: Devolvido deviso ? inconsist?ncia de datas no arquivo pdf. Na capa institucional, na ficha catalogr?fica e na folha da banca est? 2016 e na folha de rosto 2018. on 2018-10-05T16:43:09Z (GMT) / Submitted by PPG Ci?ncia da Computa??o (ppgcc@pucrs.br) on 2018-10-08T18:31:55Z No. of bitstreams: 1 LUCIANO_ ALVES_DIS.pdf: 1076874 bytes, checksum: 70823493135f9ec1a577db83eefbd19c (MD5) / Approved for entry into archive by Caroline Xavier (caroline.xavier@pucrs.br) on 2018-10-09T16:36:57Z (GMT) No. of bitstreams: 1 LUCIANO_ ALVES_DIS.pdf: 1076874 bytes, checksum: 70823493135f9ec1a577db83eefbd19c (MD5) / Made available in DSpace on 2018-10-09T16:43:56Z (GMT). No. of bitstreams: 1 LUCIANO_ ALVES_DIS.pdf: 1076874 bytes, checksum: 70823493135f9ec1a577db83eefbd19c (MD5) Previous issue date: 2016-09-23 / Software fault prediction is a significant part of software quality assurance and it is commonly used to detect faulty software modules based on software measurement data. Several machine learning based approaches have been proposed for generating predictive models from collected data, although none has become standard given the specificities of each software project. Hence, we believe that recommending the best algorithm for each project is much more important and useful than developing a single algorithm for being used in any project. For achieving that goal, we propose in this dissertation a novel framework for recommending machine learning algorithms that is capable of automatically identifying the most suitable algorithm according to the software project that is being considered. Our solution, namely FMA-PFS, makes use of the metalearning paradigm in order to learn the best learner for a particular project. Results show that the FMA-PFS framework provides both the best single algorithm recommendation and also the best ranking recommendation for the software fault prediction problem. / A predi??o de falhas de software ? uma parte significativa da garantia de qualidade do software e ? normalmente utilizada para detectar m?dulos propensos a falhar baseados em dados coletados ap?s o processo de desenvolvimento do projeto. Diversas t?cnicas de aprendizado de m?quina t?m sido propostas para gera??o de modelos preditivos a partir da coleta dos dados, por?m nenhuma se tornou a solu??o padr?o devido as especificidades de cada projeto. Por isso, a hip?tese levantada por este trabalho ? que recomendar algoritmos de aprendizado de m?quina para cada projeto ? mais importante e ?til do que o desenvolvimento de um ?nico algoritmo de aprendizado de m?quina a ser utilizado em qualquer projeto. Para alcan?ar este objetivo, prop?e-se nesta disserta??o um framework para recomendar algoritmos de aprendizado de m?quina capaz de identificar automaticamente o algoritmo mais adequado para aquele projeto espec?fico. A solu??o, chamada FMA-PFS, faz uso da t?cnica de meta-aprendizado, a fim de aprender o melhor algoritmo para um projeto em particular. Os resultados mostram que o framework FMA-PFS recomenda tanto o melhor algoritmo, quanto o melhor ranking de algoritmos no contexto de predi??o de falhas de software.

Page generated in 0.1221 seconds