• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Tutoring System for Smartphone Text Input for Older Adults using Statistical Stumble Detection / 統計的つまずき検出を用いた高齢者のためのスマートフォンテキスト入力チュータリングシステム

Hagiya, Toshiyuki 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第21207号 / 情博第660号 / 新制||情||114(附属図書館) / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 河原 達也, 教授 黒橋 禎夫, 教授 石田 亨 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
2

Discrete and Continuous Shape Writing for Text Entry and Control

Kristensson, Per Ola January 2007 (has links)
Mobile devices gain increasing computational power and storage capabilities, and there are already mobile phones that can show movies, act as digital music players and offer full-scale web browsing. The bottleneck for information flow is however limited by the inefficient communication channel between the user and the small device. The small mobile phone form factor has proven to be surprisingly difficult to overcome and limited text entry capabilities are in effect crippling mobile devices’ use experience. The desktop keyboard is too large for mobile phones, and the keypad too limited. In recent years, advanced mobile phones have come equipped with touch-screens that enable new text entry solutions. This dissertation explores how software keyboards on touch-screens can be improved to provide an efficient and practical text and command entry experience on mobile devices. The central hypothesis is that it is possible to combine three elements: software keyboard, language redundancy and pattern recognition, and create new effective interfaces for text entry and control. These are collectively called “shape writing” interfaces. Words form shapes on the software keyboard layout. Users write words by articulating the shapes for words on the software keyboard. Two classes of shape writing interfaces are developed and analyzed: discrete and continuous shape writing. The former recognizes users’ pen or finger tapping motion as discrete patterns on the touch-screen. The latter recognizes users’ continuous motion patterns. Experimental results show that novice users can write text with an average entry rate of 25 wpm and an error rate of 1% after 35 minutes of practice. An accelerated novice learning experiment shows that users can exactly copy a single well-practiced phrase with an average entry rate of 46.5 wpm, with individual phrase entry rate measurements up to 99 wpm. When used as a control interface, users can send commands to applications 1.6 times faster than using de-facto standard linear pull-down menus. Visual command preview leads to significantly less errors and shorter gestures for unpracticed commands. Taken together, the quantitative results show that shape writing is among the fastest mobile interfaces for text entry and control, both initially and after practice, that are currently known.

Page generated in 0.0469 seconds