• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 405
  • 130
  • 84
  • 31
  • 31
  • 31
  • 31
  • 31
  • 30
  • 24
  • 9
  • 8
  • 8
  • 6
  • 6
  • Tagged with
  • 856
  • 856
  • 145
  • 114
  • 79
  • 77
  • 76
  • 71
  • 70
  • 67
  • 63
  • 62
  • 62
  • 60
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Effects of hydro-meteorological variables, soil physical properties, topography and land use on unsaturated zone soil moisture in Siloam Village, South Africa

Nndwammbi, E. M. 10 February 2016 (has links)
MESCH / Department of Hydrology and Water Resources
422

Observations of Soil Moisture Dynamics Associated with Hydrocarbon Affected and Layered Coarse Textured Soils

2016 February 1900 (has links)
The Aurora Soil Capping study, located in northern Alberta, was constructed to evaluate reclamation practices on lean oil sands dumps. The challenges relating to its success includes determining the appropriate soil cover design(s) for the coarse textured reclamation soil, while utilizing available salvaged natural soils, some of which contain residual bitumen in the form of aggregate oil sand material (AOSM). Limited research on this material raises key questions as to the impact it will play on transport and retention processes, along with potential contamination from hydrocarbon leaching. The research conducted sought to answer these questions. This thesis describes laboratory studies conducted on four soils; the upper organic LFH layer, Bm, BC and subsoil material while varying the amount of AOSM and implementing layering schemes. Material characterization through organic carbon and particle size analysis as well as hydrophobicity studies on AOSM through contact angle analysis were performed. A tension table and pressure plates, along with columns equipped with Time Domain Reflectometry probes, were used for water retention studies. Hydraulic conductivity was measured through constant head methods. To address hydrocarbon leaching concerns, chloride tracer studies were performed and the column outflow was analyzed using Gas Chromatography to detect the hydrocarbon type and concentration. Results from water retention and hydraulic conductivity studies indicated that although the AOSM was hydrophobic, its placement at varying concentrations and forms did not create consistent significant differences in the amount of moisture retained or transported. Results from the column studies showed that under steady state and transient conditions AOSM could result in decreasing infiltration rates and increasing chloride retention. The integration of soil layers further slowed the infiltration rate and delayed chloride transport. Under saturated conditions the presence of higher concentrations of AOSM appeared to increase the rate of water movement. Although these differences were minimal, further studies are required to explore this behavior. Overall, it can be concluded that with appropriate material placement, the addition of layering schemes and hydrocarbon material, the potential exists to increase soil water content in the upper layers of the soil, thereby increasing soil water storage for plant use.
423

Herbage production as a function of soil moisture stress in a semiarid area

Owtadolajam, Esmail. January 1982 (has links)
Soil water deficits greatly affect forage production. To evaluate the effects of soil moisture stress on forage production, a budgeting model was developed. The soil water budgeting model uses the initial soil water content which can be assumed or calculated. Stress was calculated as a difference between potential evapotranspiration and actual evapotranspiration at a level of - 5 bar. A radiation method was used to calculate the potential evapotranspiration and the soil water budgeting model was used to calculate the actual evapotranspiration. The Soil Conservation Service method was applied to calculate runoff and effective rainfall was calculated by subtraction of runoff from original rainfall and used in the model for calculation of actual evapotranspiration. Calculated stress was correlated to the yield and stepwise multiple regression were used to produce prediction equations. Observed soil water data and yield for calibration and validation of the models were obtained from Santa Rita Forest and Range Experimental Range in southeastern Arizona.
424

Land-atmosphere interaction and climate variability

Wei, Jiangfeng 17 May 2007 (has links)
Land-atmosphere interaction includes complex feedbacks among radiative, hydrological, and ecological processes, and the understanding of it is hindered by many factors such as the heterogeneity of land surface properties, the chaotic nature of the atmosphere, and the lack of observational data. In this study, several different methods are used to investigate the land-atmosphere interaction processes and their relationship with climate variability. Firstly, a simple one-dimensional model is developed to simulate the dominant soil-vegetation-atmosphere interaction processes in the warm climate. Although the physical processes are described coarsely, the model can be more easily used to find some relationships which may be drown out or distorted by noise. The influence of land on climate variability mainly lies in it memory, which is greatly related with the atmospheric forcing, so this model is used to investigate the influence of different forcing strengths on land-atmosphere interaction and its difference at different land covers. The findings from the simple model can provide guidance for other studies. The second part of the study compares a lagged soil moisture-precipitation (S-P) correlation (soil moisture in current day and precipitation in future 30 days) in three atmospheric reanalysis products (ERA-40, NCEP/DOE reanalysis-2, and North American Regional Reanalysis (NARR)), Global Soil Wetness Project Phase 2 (GSWP-2) data, and NCAR CAM3 simulations. Different datasets and model simulations come to a similar negative-dominant S-P correlation pattern. This is different from the traditional view that the soil moisture should have positive influence on future precipitation. Further analysis shows that this correlation pattern is not caused by the soil moisture feedback but due to the combined effect of the precipitation oscillation and the memory of soil moisture. Theoretical analysis confirms the above results and finds that the precipitation time series with the strongest oscillation at 32-60 day period is most likely to induce a significantly negative S-P correlation, and regions with longer soil water retention time are more likely to have a significantly negative S-P correlation. This study illustrates that a lagged correlation does not always indicate a causal relation.
425

Geochemical and isotopic mixing models : two case studies in a snow-dominated and semi-arid environment

Huth, Anne M. Kramer. January 2003 (has links)
The influence of climate and antecedent moisture conditions on hydrological and biogeochemical fluxes was studied and contrasted in three nested, high-elevation, snowmelt-dominated catchments in the Sierra Nevada, California and one basin-floor, semi-arid catchment in southeastern Arizona. Investigations were completed within a different two-year period at each site, with the second year being climatically different (typically drier) than the first. Spring snowmelt, widespread winter frontal precipitation, and episodic summer rains induce surface water flow in these catchments, though the timing and magnitude of nutrient redistribution among soil and stream compartments varies in each. Surface water flow from spring snowmelt in high-elevation catchments travels through the subsurface or across the surface as direct runoff A more typical process producing surface water flow in semi-arid catchments is flooding during episodic or widespread rainfall. Hydrograph separations at Emerald Lake, Topaz Lake and Marble Fork catchments in Sequoia National Park, California, revealed that the majority of snowmelt flowed through soil before entering the stream in both average and highsnow years. The Emerald Lake watershed had a higher fraction of old water in its outflow in the average accumulation year because of the previous year's high accumulation and longer melt season. A mixing model analysis performed of the upper San Pedro River, Arizona, for wet and dry years showed that summer flood hydrographs were composed mainly of precipitation and surface runoff in both years, though a higher soil-water input occurred in the wetter year and in early season floods in the dry year. Stream and soil water nitrate concentrations were higher during floods in the dry year. Early season floods in the dry year exhibited more variability in stream water nitrate and sulfate, whereas late season flood concentrations reflected a well-mixed system and therefore less variation of these species during flood hydrographs. These data showed that periods of below average precipitation preceding major runoff periods result both in less soil water and solute export during summer floods in basin-floor catchments and less direct snowmelt in high-elevation catchments. Hydrologic and solute export in each catchment, despite their differing geographical locations, responds in similar ways to climate variability.
426

Lucerne (Medicago sativa) productivity and its effect on the water balance in southern Western Australia

Dolling, Perry January 2006 (has links)
[Truncated abstract] In southern Western Australia the replacement of deep-rooted native vegetation with annual species has resulted in rising water tables and increased salinity due to insufficient water use. The area has a Mediterranean-type climate where rainfall during summer is generally low but variable resulting in limited plant growth. However, if rainfall does occur it potentially can contribute to to the increased water excess or drainage by increasing the soil water content before the main drainage period in winter. The first study investigated factors controlling soil water content changes during the fallow (December to May) in annual farming systems. This was achieved by examining variation in available soil water storage to a depth of 1.0-1.5 m at three sites within 13 seasons. Reasons for the variation were examined using the Agricultural Production Systems Simulator (APSIM). This study also investigated the relationship between soil water content at the end of the fallow period (1 May) and the amount of drainage below 2.5 m by using APSIM coupled to historical weather records at three locations. At the end of the fallow a mean of 24 mm (or 25%) of rainfall during the fallow was retained in the soil. Losses of soil water during the fallow were due to evaporation (mean of 60 mm), transpiration from plant cover (mean of 12 mm) and drainage below the root zone and run off (combined mean of 13 mm). Soil water accumulation during the fallow period had a significant impact on simulated drainage under wheat in the following growing season. Every 1 mm increase in soil wetness at the end of the fallow resulted in a 0.7-1 mm increase in simulated drainage during the growing season. ... Variation in the water excess due to variation in rainfall was greater than the reduction in water excess due to lucerne. This makes the decisions about when to grow lucerne to reduce water excess difficult if livestock enterprises are less profitable than cropping enterprises. The findings of this PhD indicate that lucerne does have a place in Mediterranean-type environments because of its greater water use than current farming practices. However, its use needs to be strategic and the strategy will vary from region to region. For example, in the low rainfall region lucerne sowings need to be matched with high soil water contents and phase length will generally be short (2-3 years). In comparison at high rainfall regions lucerne will need to be grown for longer or combined with other strategies to increase water use.
427

Use of Water Indices Derived from Landsat OLI Imagery and GIS to Estimate the Hydrologic Connectivity of Wetlands in the Tualatin River National Wildlife Refuge

Blackmore, Debra Sue 30 August 2016 (has links)
This study compared two remote sensing water indices: the Normalized Difference Water Index (NDWI) and the Modified NDWI (MNDWI). Both indices were calculated using publically-available data from the Landsat 8 Operational Land Imager (OLI). The research goal was to determine whether the indices are effective in locating open water and measuring surface soil moisture. To demonstrate the application of water indices, analysis was conducted for freshwater wetlands in the Tualatin River Basin in northwestern Oregon to estimate hydrologic connectivity and hydrological permanence between these wetlands and nearby water bodies. Remote sensing techniques have been used to study wetlands in recent decades; however, scientific studies have rarely addressed hydrologic connectivity and hydrologic permanence, in spite of the documented importance of these properties. Research steps were designed to be straightforward for easy repeatability: 1) locate sample sites, 2) predict wetness with water indices, 3) estimate wetness with soil samples from the field, 4) validate the index predictions against the soil samples from the field, and 5) in the demonstration step, estimate hydrologic connectivity and hydrological permanence. Results indicate that both indices predicted the presence of large, open water features with clarity; that dry conditions were predicted by MNDWI with more subtle differentiation; and that NDWI results seem more sensitive to sites with vegetation. Use of this low-cost method to discover patterns of surface moisture in the landscape could directly improve the ability to manage wetland environments.
428

Mikrotalasni senzori vlažnosti zemljišta zasnovani na komponentama sa distribuiranim parametrima / Microwave soil moisture sensors based on distributed elements

Kitić Goran 04 October 2016 (has links)
<p>Senzori vlažnosti zemljišta su od ključnog značaja za sisteme za navodnjavanje kojima je moguće uvećati prinose u proseku za 79%. U okviru ove disertacije razvijena su dva senzorska rešenja za merenje vlažnosti zemljišta. Prvi senzor je namenjen određivanju vlažnosti uzoraka zemljišta u neporemećenom stanju. Rešenje je nastalo nadogradnjom standardne opreme za uzorkovanje zemljišta. Za pomenuti senzor konstruisana je kalibraciona kriva kojom je moguće odrediti vlažnost zemljišta sa relativnom greškom ne većom od 2.5%. Drugo senzorsko rešenje je fabrikovano u LTCC tehnologiji, malih je dimenzija i namenjeno je primeni na terenu. Glavna prednost ovog senzora je da na njega ne utiče provodnost zemljišta koja je usko povezana sa tipom zemljišta. Predloženi senzor je testiran na dva uzorka zemljišta različitog hemijskog sastava. Rezultati merenja su pokazali da tip zemljišta nema uticaj na odziv senzora. Ostvarena relativna greška u odnosu na pun merni opseg iznosi 5.36%.</p> / <p>Soil moisture sensors are of great importance for the irrigation systems that<br />are able to increase the yiel on avarage of 79%. Within this thesis two sensor<br />solutions have been developed. The first sensor, which is intended for<br />laboratory use, has been designed by upgrading existing sampling<br />equipment. The constructed calibration curve for this type of sensor that can<br />be used for soil mositure determination with relative error not larger than<br />2.5% with respect to full scale output. The second sensor solution is<br />designed to be used in the field. It is fabricated in LTCC technology and it is<br />charaterized by small overall dimensions. The main advantage of this sensor<br />is that it is immune to the soil electrical conductivity which is closely related to<br />the soil type. Proposed sensor is tested on two soil sample of different<br />chemical composition and the results have shown that the type of soil does<br />not influence the sensor response. The relative error with the respect of full<br />scale output was only 5.36 %.</p>
429

Short term effects of annual ryegrass, red clover and hairy vetch cover crops on various indicators of soil health

Stout, Breanna January 1900 (has links)
Master of Science / Department of Biological and Agricultural Engineering / Philip L. Barnes / The world’s population has passed 7 billion and is expected grow to more alarming numbers by the year 2050. The increase in human life on the planet ushers the need to responsibly and sustainably grow more food. In order to meet the demand necessary, it is crucial that soil remains healthy and crop yields continue to increase in efficiency. Irresponsible or ill-informed practices can lead to depleted resources and degradation of fertile soils that may limit a producers’ ability to sustainably grow food. Cover crops are a tool that can be used to address issues the modern producer may face. Cover crops have been shown to increase cash crop productivity, improve soil health by improving soil physical and chemical properties as well as providing protection from soil erosion runoff or nutrient leaching. A study was conducted in 2014 to examine the short term effects associated with cover cropping systems. The effects of ryegrass, red clover and a cover crop cocktail (mixture of ryegrass, red clover and hairy vetch) compared to bare tilled and bare control plots were studied. The five treatments were replicated three times in a completely randomized study and analyzed. Soil physical health indicators such as bulk density and porosity were calculated. Soil and cover crop nutrient use, as well as, soil moisture content data was collected and analyzed using excel and ANOVA statistical procedures. In the short term, the study found that there was only statistically significant differences between cover cropping regimens, tilled and control plots in regards to biomass production and biomass nutrient concentrations (α=0.05). The cocktail mix provided more biomass, N and P than the ryegrass and clover plots alone. Observable differences in cover crop volumetric soil moisture and water used between plots demonstrated that cover crops utilize soil moisture in the short term, which must be considered in areas experiencing water stress. Although more long-term data is needed to truly quantify how cover crops effect various aspects of soil health, this study demonstrated how cover crops have the potential for providing numerous benefits such as increased erosion control, lower reliance on anthropogenically created nutrients and the reduction of weeds. Overall the benefits associated with cover crops are still being researched and while adoption of cover cropping systems has been slow, a push towards agricultural sustainability while increasing food production will increase the amount of producers utilizing cover crops in the coming years.
430

Interrelations of temperature and soil moisture in the growth of young wheat plants

Chang, Hsien Tsiu January 2011 (has links)
Typescript. / Digitized by Kansas State University Libraries

Page generated in 0.0764 seconds