• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 71
  • 37
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 7
  • 6
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 291
  • 291
  • 86
  • 72
  • 71
  • 44
  • 36
  • 36
  • 32
  • 27
  • 27
  • 26
  • 24
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Nonpoint Source Pollutant Modeling in Small Agricultural Watersheds with the Water Erosion Prediction Project

Ryan McGehee (14054223) 04 November 2022 (has links)
<p>Current watershed-scale, nonpoint source (NPS) pollution models do not represent the processes and impacts of agricultural best management practices (BMP) on water quality with sufficient detail. To begin addressing this gap, a novel process-based, watershed-scale, water quality model (WEPP-WQ) was developed based on the Water Erosion Prediction Project (WEPP) and the Soil and Water Assessment Tool (SWAT) models. The proposed model was validated at both hillslope and watershed scales for runoff, sediment, and both soluble and particulate forms of nitrogen and phosphorus. WEPP-WQ is now one of only two models which simulates BMP impacts on water quality in ‘high’ detail, and it is the only one not based on USLE sediment predictions. Model validations indicated that particulate nutrient predictions were better than soluble nutrient predictions for both nitrogen and phosphorus. Predictions of uniform conditions outperformed nonuniform conditions, and calibrated model simulations performed better than uncalibrated model simulations. Applications of these kinds of models in real-world, historical simulations are often limited by a lack of field-scale agricultural management inputs. Therefore, a prototype tool was developed to derive management inputs for hydrologic models from remotely sensed imagery at field-scale resolution. At present, only predictions of crop, cover crop, and tillage practice inference are supported and were validated at annual and average annual time intervals based on data availability for the various management endpoints. Extraction model training and validation were substantially limited by relatively small field areas in the observed management dataset. Both of these efforts contribute to computational modeling research and applications pertaining to agricultural systems and their impacts on the environment.</p>

Page generated in 0.0482 seconds