• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 68
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 6
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 234
  • 234
  • 108
  • 100
  • 46
  • 40
  • 33
  • 24
  • 24
  • 23
  • 23
  • 23
  • 21
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Soils and geomorphology of a lowland rimu forest managed for sustainable timber production

Almond, Peter C. January 1997 (has links)
Saltwater Forest is a Dacrydium cupressinum-dominated lowland forest covering 9000 ha in south Westland, South Island, New Zealand. Four thousand hectares is managed for sustainable production of indigenous timber. The aim of this study was to provide an integrated analysis of soils, soil-landform relationships, and soil-vegetation relationships at broad and detailed scales. The broad scale understandings provide a framework in which existing or future studies can be placed and the detailed studies elucidate sources of soil and forest variability. Glacial landforms dominate. They include late Pleistocene lateral, terminal and ablation moraines, and outwash aggradation and degradation terraces. Deposits and landforms from six glacial advances have been recognised ranging from latest Last (Otira) Glaciation to Penultimate (Waimea) Glaciation. The absolute ages of landforms were established by analysis of the thickness and soil stratigraphy of loess coverbeds, augmented with radiocarbon dating and phytolith and pollen analysis. In the prevailing high rainfall of Westland soil formation is rapid. The rate of loess accretion in Saltwater Forest (ca. 30 mm ka⁻¹) has been low enough that soil formation and loess accretion took place contemporaneously. Soils formed in this manner are known as upbuilding soils. The significant difference between upbuilding pedogenesis and pedogenesis in a topdown sense into an existing sediment body is that each subsoil increment of an upbuilding soil has experienced processes of all horizons above. In Saltwater Forest subsoils of upbuilding soils are strongly altered because they have experienced the extremely acid environment of the soil surface at some earlier time. Some soil chronosequence studies in Westland have included upbuilding soils formed in loess as the older members of the sequence. Rates and types of processes inferred from these soils should be reviewed because upbuilding is a different pedogenic pathway to topdown pedogenesis. Landform age and morphology were used as a primary stratification for a study of the soil pattern and nature of soil variability in the 4000 ha production area of Saltwater Forest. The age of landforms (> 14 ka) and rapid soil formation mean that soils are uniformly strongly weathered and leached. Soils include Humic Organic Soils, Perch-gley Podzols, Acid Gley Soils, Allophanic Brown Soils, and Orthic or Pan Podzols. The major influence on the nature of soils is site hydrology which is determined by macroscale features of landforms (slope, relief, drainage density), mesoscale effects related to position on landforms, and microscale influences determined by microtopography and individual tree effects. Much of the soil variability arises at microscales so that it is not possible to map areas of uniform soils at practical map scales. The distribution of soil variability across spatial scales, in relation to the intensity of forest management, dictates that it is most appropriate to map soil complexes with boundaries coinciding with landforms. Disturbance of canopy trees is an important agent in forest dynamics. The frequency of forest disturbance in the production area of Saltwater Forest varies in a systematic way among landforms in accord with changes in abundance of different soils. The frequency of forest turnover is highest on landforms with the greatest abundance of extremely poorly-drained Organic Soils. As the abundance of better-drained soils increases the frequency of forest turnover declines. Changes in turnover frequency are reflected in the mean size and density of canopy trees (Dacrydium cupressinum) among landforms. Terrace and ablation moraine landforms with the greatest abundance of extremely poorly-drained soils have on average the smallest trees growing most densely. The steep lateral moraines, characterised by well drained soils, have fewer, larger trees. The changes manifested at the landform scale are an integration of processes operating over much shorter range as a result of short-range soil variability. The systematic changes in forest structure and turnover frequency among landforms and soils have important implications for sustainable forest management.
232

The dynamic interplay of mechanisms governing infiltration into structured and layered soil columns

Carrick, Sam January 2009 (has links)
Worldwide there is considerable concern over the effects of human activities on the quantity and quality of freshwater. Measurement of infiltration behaviour will be important for improving freshwater management. This study identifies that New Zealand has a sporadic history of measuring soil water movement attributes on a limited number of soil types, although the current practical demand should be large for management of irrigation, dairy farm effluent disposal, as well as municipal / domestic waste- and storm-water disposal. Previous research has demonstrated that infiltration behaviour is governed by the interplay between numerous mechanisms including hydrophobicity and preferential flow, the latter being an important mechanism of contaminant leaching for many NZ soils. Future characterisation will need to recognise the dynamic nature of these interactions, and be able to reliably characterise the key infiltration mechanisms. Since macropores are responsible for preferential flow, it is critical that infiltration studies use a representative sample of the macropore network. The aim of this project was to study the mechanisms governing the infiltration behaviour of a layered soil in large (50 x 70 cm) monolith lysimeters, where the connectivity of the macropore network remains undisturbed. Four lysimeters of the Gorge silt loam were collected, a structured soil with four distinct layers. On each lysimeter there were four separate infiltration experiments, with water applied under suctions of 0, 0.5, 1, and 1.5 kPa by a custom-built tension infiltrometer. Each lysimeter was instrumented with 30 tensiometers, located in arrays at the layer boundaries. There was also a field experiment using ponded dye infiltration to visually define preferential flowpaths. Analysis of dye patterns, temporal variability in soil matric potential (Ψm), and solute breakthrough curves all show that preferential flow is an important infiltration mechanism. Preferential flowpaths were activated when Ψm was above -1.5 kPa. During saturated infiltration, at least 97% of drainage was through the ‘mobile’ pore volume of the lysimeter (θm), estimated among the lysimeters at 5.4 – 8.7 % of the lysimeter volume. Early-time infiltration behaviour did not show the classical square-root of time behaviour, indicating sorptivity was not the governing mechanism. This was consistent across the four lysimeters, and during infiltration under different surface imposed suctions. The most likely mechanism restricting sorptivity is weak hydrophobicity, which appears to restrict infiltration for the first 5 – 10 mm of infiltration. Overall, the Gorge soil’s early-time infiltration behaviour is governed by the dynamic interaction between sorptivity, hydrophobicity, the network of air-filled pores, preferential flow and air encapsulation. Long-time infiltration behaviour was intimately linked to the temporal dynamics of Ψm, which was in turn controlled by preferential flow and soil layer interactions. Preferential flowpaths created strong inter-layer connectivity by allowing an irregular wetting front to reach lower layers within 2 – 15 mm of infiltration. Thereafter, layer interactions dominate infiltration for long-time periods, as Ψm in soil layers with different K(Ψm) relationships self-adjusts to try to maintain a constant Darcy velocity. An important finding was that Ψm rarely attained the value set by the tension infiltrometer during unsaturated infiltration. The results show that ‘true’ steady-state infiltration is unlikely to occur in layered soils. A quasi-steady state was identified once the whole column had fully wet and layer interactions had settled to where Ψm changes occurred in unison through each soil layer. Quasi-steady state was difficult to identify from just the cumulative infiltration curve, but more robustly identified as when infiltration matched drainage, and Ψm measurements showed each layer had a stable hydraulic gradient. I conclude that the in-situ hydraulic conductivity, K(Ψm), of individual soil layers can be accurately and meaningfully determined from lysimeter-scale infiltration experiments. My results show that K(Ψm) is different for each soil layer, and that differences are consistent among the four lysimeters. Under saturated flow the subsoil had the lowest conductivity, and was the restricting layer. Most interestingly this pattern reversed during unsaturated flow. As Ψm decreased below -0.5 to -1 kPa, the subsoil was markedly more conductive, and the topsoil layers became the restricting layers. All four soil layers demonstrate a sharp decline in K(Ψm) as Ψm decreases, with a break in slope at ~ -1 kPa indicating the dual-permeability nature of all layers.
233

Biological potential and diffusion limitation of methane oxidation in no-till soils

Prajapati, Prajaya 21 May 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Long term no-till (NT) farming can improve the CH4 oxidation capacity of agricultural lands through creation of a favorable soil environment for methanotrophs and diffusive gas transport. However, limited data is available to evaluate the merit of that contention. Although the potential for biological CH4 oxidation may exist in NT soils, restricted diffusion could limit expression of that potential in fine-textured soils. A study was conducted to assess the CH4 oxidation potential and gaseous diffusivity of soils under plow till (PT) and NT for > 50 years. Intact cores and composite soils samples (0-10 and 10-20 cm) were collected from NT and PT plots located at a well-drained site (Wooster silt loam) and at a poorly-drained (Crosby silt loam) site in Ohio. Adjacent deciduous forest soils were also sampled to determine maximum rate expected in undisturbed soils in the region. Regardless of study sites and soil depth, CH4 oxidation rate (measured at near ambient CH4) and oxidation potential (Vmax, measured at elevated CH4) were 3-4 and 1.5 times higher in NT than in PT soils, respectively. Activity in the NT soils approached (66-80 %) that in the forest soils. Half saturation constants (Km) and threshold for CH4 oxidation (Th) were lower in NT (Km: 100.5 µL CH4 L-1; Th: 0.5 µL CH4 L-1) than in PT soils (Km: 134 µL CH4 L-1; Th: 2.8 µL CH4 L-1) suggesting a greater affinity of long-term NT soils for CH4, and a possible shift in methanotrophic community composition. CH4 oxidation rates were lower in intact soil cores compared to sieved soils, suggesting that CH4 oxidation was limited by diffusion, a factor that could lead to lower field-measured CH4 uptake than suggested by biological oxidation capacity measured in the laboratory. Regardless of soil drainage characteristic, long-term NT resulted in significantly higher (2-3 times) CH4 diffusivity (mean: 2.5 x 10-3 cm2 s-1) than PT (1.5 x 10-3 cm2 s-1), probably due to improved soil aggregation and greater macro-pores volume in NT soils. Overall, these results confirm the positive impact of NT on the restoration of the biological (Vmax, Km and Th) and physical (diffusivity) soil attributes essential for CH4 uptake in croplands. Long-term implementation of NT farming can therefore contribute to the mitigation of CH4 emission from agriculture.
234

Nonpoint Source Pollutant Modeling in Small Agricultural Watersheds with the Water Erosion Prediction Project

Ryan McGehee (14054223) 04 November 2022 (has links)
<p>Current watershed-scale, nonpoint source (NPS) pollution models do not represent the processes and impacts of agricultural best management practices (BMP) on water quality with sufficient detail. To begin addressing this gap, a novel process-based, watershed-scale, water quality model (WEPP-WQ) was developed based on the Water Erosion Prediction Project (WEPP) and the Soil and Water Assessment Tool (SWAT) models. The proposed model was validated at both hillslope and watershed scales for runoff, sediment, and both soluble and particulate forms of nitrogen and phosphorus. WEPP-WQ is now one of only two models which simulates BMP impacts on water quality in ‘high’ detail, and it is the only one not based on USLE sediment predictions. Model validations indicated that particulate nutrient predictions were better than soluble nutrient predictions for both nitrogen and phosphorus. Predictions of uniform conditions outperformed nonuniform conditions, and calibrated model simulations performed better than uncalibrated model simulations. Applications of these kinds of models in real-world, historical simulations are often limited by a lack of field-scale agricultural management inputs. Therefore, a prototype tool was developed to derive management inputs for hydrologic models from remotely sensed imagery at field-scale resolution. At present, only predictions of crop, cover crop, and tillage practice inference are supported and were validated at annual and average annual time intervals based on data availability for the various management endpoints. Extraction model training and validation were substantially limited by relatively small field areas in the observed management dataset. Both of these efforts contribute to computational modeling research and applications pertaining to agricultural systems and their impacts on the environment.</p>

Page generated in 0.0469 seconds