• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 248
  • 78
  • 50
  • 33
  • 33
  • 33
  • 33
  • 33
  • 33
  • 32
  • 20
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 1052
  • 1052
  • 277
  • 276
  • 275
  • 216
  • 134
  • 128
  • 92
  • 88
  • 75
  • 64
  • 59
  • 56
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Surface acidity and colour reactions on clay minerals and oxides

Barber, R. P. January 1981 (has links)
A reliable method was devised for the determination of surface acidity of clay minerals and oxides, by the adsorption of m-nitroaniline from aqueous solution, which accounted for the energy of adsorption of the protonated and unprotonated forms. The Hammett acidity function (Ho) of a sample of H+ -Kaolinite was 2.21, at bulk pH 3.0 The reaction of crystal violet (CV) and crystal violet lactone (CVL) were studied in solution and on clay minerals. CV and CVL decompose in methanolic and ethanolic solution if exposed to light, to yield demethylated derivatives. The products of CVL differ from CV and this suggests, the colourless lactone is more photolabile than CV. A colourless solution of CVL will undergo lactone cleavage on clay minerals and oxides to form a violet zwitterion. This zwitterion can be displaced from the surface by water vapour. Minerals with a high surface acidity resist the displacement of the zwitterion to a greater extent then do those with a low surface acidity, the counterion being an important factor in determining the acid strength of the surface. CVL undergoes demethylation on silica and Silton to yield the same products as in solution. Silton is a brand name of an acid- treated dioctchedral mo montmorillonite. The reactions of methylene blue (MB) and benzoyl leuco methylene blue (BLMB) were studied on clay minerals and in solution. The first order rate constant for the production of methylene blue from BLMB at 39 and 50°C were 1.54 x 10-6 and 3.47 x 10-6 sec-1 , respectively. If sodium cobalti - nitrite or eerie ammonium nitrate were added to an acidic solution of BLMB, the rate of MB production was greatly enhanced. The overall reaction was 2nd order in the case of NaCo(NO2)6 and 3rd order in the case of (NH4)2 Co(NO3)6. The rate constants for the reactions were 8.95 1M-1 sec-1 and 6.25 x 108 12 M-2 sec -1. This suggested that two electrons were transferred from BLMB to Na3Co(NO2) 6 simultaneously, and singly to (NH4)2Ce(NO3)6. MB and BLMB demethylated on silica gel and Silton, to yield Azure A, B, C, sym-dimethylthionine, and thionine. Production of MB from BLMB requires light and operates via a photon induced free radical mechanism. The presence of Co3+ or Ce4+, electron acceptors, on silica or Silton accelerates the reaction rate and does not require light.
342

Numerical and constitutive modelling of monotonic and cyclic loading in variably saturated soils

Habte, Michael Andebrhan, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2006 (has links)
A fully coupled, effective stress based elasto-plastic model is presented for a rigorous analysis of flow and deformation in variably saturated porous media subjected to monotonic and cyclic loading. The governing equations are derived based on the effective stress concept, equations of equilibrium, and conservation equations of mass and momentum using a systematic macroscopic approach. Both elastic and elasto-plastic constitutive equations are developed. All model coefficients are identified in terms of measurable parameters. The governing equations presented are general in nature, embodying all previously presented formulations in the field. A unified bounding surface plasticity model is developed to describe the stress-strain behaviour of variably saturated soils subjected to monotonic and cyclic loading. The model is formulated incrementally within the critical state framework using the effective stress approach. The model takes into account the effects of both plastic volumetric strain and matric suction on the hardening of the bounding surface. Cyclic behaviour is captured through a new mapping rule in which the point of stress reversal is taken as the centre of projection. The effect of particle crushing at high stresses is considered through a three-segmented critical state and isotropic compression lines. A non-associative flow rule is employed to generalise application of the model to all soils. Solution to the governing equations is obtained numerically using the finite element approach, with the finite difference method employed for the time integration of the rate equations. The elasto-plastic constitutive equations are integrated explicitly using Euler???s forward and the modified Euler integration schemes. Yield surface correction schemes are adopted to improve accuracy of the solution. Essential elements of the proposed model are validated by comparing numerical predictions with experimental data from the literature for fully and partially saturated soils subjected to monotonic and cyclic loadings in drained, undrained, isotropic and deviatoric conditions. The results demonstrate capability of the coupled model to predict essential characteristics of variably saturated soils subjected to monotonic and cyclic loadings in a unified manner.
343

Environmental fate of imidazolinone herbicides and their enantiomers in soil and water.

Ramezani, Mohammadkazem January 2008 (has links)
Imidazolinones represent a new class of herbicides with low mammalian toxicity that can be used at low application rates, either pre- or post-emergence for the control of a wide range of weeds in broadleaf and cereal crops, and non-crop situations. All imidazolinone herbicides are chiral, containing two enantiomers that derive from the chiral centre of the imidazolinone ring. The inhibitory activity of the R(+) enantiomer is nearly eight times greater than that of the S(-) enantiomer. The use of imidazolinone herbicides has increased in recent years in Australia owing to increased popularity of pulses and the introduction of imidazolinone-tolerant canola and wheat. Concerns have been raised about the potential carry over damage to the subsequent crops grown in rotation with legumes and herbicide tolerant crops. Furthermore, the presence of alkaline soils in some regions of Australia may lead to the repellence of imidazolinone herbicides, which are chiefly present in anionic form at high pH values. Thus leaching and potential contamination of ground water may occurr when these herbicides are applied on alkaline soils in certain agroclimatic zones. There is some information in the literature on the degradation, sorption and leaching behaviour of these herbicides in the environment. However, there is little information about the behaviour of these herbicides in alkaline soils found in some areas of Australia. Until now there has been no investigation of enantioselectivity in the degradation of imidazolinone herbicides in soils. Therefore, this study was undertaken to determine the behaviour of three imidazolinone herbicides in solution and Australian soils including enantioselectivity in the degradation of these herbicides in Australian soils. Analytical method for these herbicides needed to be developed/improved to cater for specific experimental conditions for this study, namely the matrices containing higher levels of organic carbon and to analyse the two enantiomers of these herbicides. The extraction of imazapyr, imazethapyr and imazaquin was investigated using solid-phase extraction (SPE) procedure. The evaluation of different aqueous solutions (0.1 KCl, 0.5 M NaOH, 0.01M NaOH and 0.5M MeOH:NaOH, (80:20)) showed that the recovery of all three herbicides was greater than 70%. However, the highest level of herbicide recovery was obtained with 0.5M NaOH as the extraction solution. Evaluation of different solid phase extraction cartridges showed that PPL cartridge is most appropriate for the isolation and subsequent quantification of these herbicides in water and humic-amended solutions when used at pH 2. When used with soil extracts, SPE cartridges C[subscript]18 + SCX allowed removal of co-extracting substances, resulting in high levels of herbicide recovery and accurate quantification with HPLC. These improved protocols were used in subsequent studies. The abiotic degradation of the imidazolinone herbicides imazapyr, imazethapyr and imazaquin was investigated under controlled laboratory conditions. Hydrolysis, where it occurred, and photodegradation both followed first order kinetics for all herbicides. There was no hydrolysis of any of the herbicides in buffer solutions at pH 3 or pH 7; however, slow hydrolysis occurred at pH 9. Degradation of the herbicides in the light was considerably more rapid than in the dark with half lives for the three herbicides of 1.8, 9.8 and 9.1 days for imazaquin, imazethapyr and imazapyr, respectively. The presence of humic acids in the solution reduced the rate of photodegradation for all three herbicides, with higher concentrations of humic acids generally having greater effect. The enantioselectivity of photodegradation was investigated using imazaquin, with photodegradation occurring at the same rate for both enantiomers. Abiotic degradation of imidazolinone herbicides on the soil surface only occurred in the presence of light. The rate of degradation for all three herbicides on the soil surface was slower than in solution, with half-lives of 15.3, 24.6 and 30.9 days for imazaquin, imazethapyr and imazapyr, respectively. Sterilizing the soil significantly (p < 0.05) decreased the degradation rate of both enantiomers of imidazolinone herbicides, with 81.5 to 89.5% of each enantiomer of the two herbicides remaining unchanged. However, in non-sterilized soils, the degradation of imazapyr and imazethapyr showed enantioselectivity with faster degradation of R(+) enantiomer compared with S(-) enantiomer. There were also some differences in enantioselectivity between different soils, which could be related to variation in microbial populations and enzymes present in different soils. Soil pH had a significant effect on enantioselectivity, which could be due to the effect of this soil property on herbicide sorption and ease of its availability for microbial degradation. This aspect however needs further investigations. Results from studies on soils receiving organic amendment (lupin residue) showed that degradation of the S(-) and R(+) enantiomers of imazethapyr and imazaquin followed firstorder reaction with half-life values of 45.9 to 105 days in non-sterilized soils for S(-) and R(+) enantiomers, respectively. Irrespective of the organic amendment, the degradation rate of the S(-) and R(+) enantiomers of the two herbicides was greater in the Roseworthy (pH 8.2) soil compared with the Clare soil (pH 5.2). Addition of lupin residue as organic amendment (2% w/w) increased degradation rates of both the S(-) and R(+) enantiomers of imazethapyr and imazaquin and significantly (p < 0.05) decreased their half-lives in the Clare soil. However, this amendment produced no significant change in degradation of enantiomers of either of the two herbicides in Roseworthy soil. The enantiomer fraction (EF) values of both herbicides increased over time, which suggested selective degradation of one enantiomer in preference to the other depending on the type of soil and amendment treatment. In the Clare soil, organic amendment increased the EF value at the end of incubation period from 0.61 to 0.76 for imazethapyr and from 0.56 to 0.66 for imazaquin, indicating enantioselective degradation of these herbicides. There was no significant increase in EF values for both herbicides in Roseworthy soil as the result of organic amendment. In conclusion, photodegradation of imidazolinone herbicides was found to have a major impact on the behaviour of these herbicides in aqueous and soil matrices. The degradation of imidazolinone herbicides in the soil was enantioselective, however, the enantioselectivity tended to be compound-specific and was related to soil types. The findings of this study are expected to be useful for the manufacturers to decrease the amount of chemical load in the environment. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1331166 / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine, 2008
344

The assessment of soil aggregate stability to raindrop impact for some tropical soils material, with particular reference to iron

Cousen, S. M. L. January 1987 (has links)
Soil aggregate stability to raindrop impact is df fundamental importance to many aspects of the soil system, in particular rainsplash erosion. This stability has been measured by use of single drop rainfall simulators, the characteristics and operation of which have, in the past, shown considerable variation. The drop sizes, impact frequency, drop fall height, chemistry of drop-forming liquid, aggregate pretreatment, and definition of breakdown affect the way in which the the apparatus can be used to define stability. In this thesis an apparatus is developed that is believed to give results with increased consistency and replicability. An index of stability (F) is evolved from data collected using the raindrop simulator which is then used to characterise a set of iron rich, tropical soils from Kenya and Mo~ambique. Information about the iron, textural, chemical and magnetic status of each soil sample is also collected and used to try to predict the stability index through a process of statistical modelling. Models for highly stable and poorly stable soils are developed and finally a definitive model that can be used for all the soils. The last section of this investigation attempts to try and explain the results in terms of the processes that might be operating in the soil. Specific reference is made to the iron content of the soils because of its natural abundance in the samples considered. The possible contributions of total iron, crystalline iron, amorphous iron and organic iron to aggregate stability are discussed.
345

Monitoring the spatial and temporal dynamics of the Brazilian Cerrado physiognomies with spectral vegetation indices: An assessment within the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)

Ferreira, Laerte Guimaraes January 2001 (has links)
The large extension and diversity of the Cerrado vegetative cover, the second largest biome in South America, has a strong impact on regional, and possibly global, energy, water, and carbon balances. Nevertheless, as a major farming frontier in Brazil, it is estimated that about 40% of the Cerrado land cover has already been converted into cultivated pastures, field crops, urban development, and degraded areas. Despite this aggressive pace of land conversion, there have been few investigations on the operational utilization of remote sensing data to effectively monitor and understand this biome. Within this context, and within the goals and framework of the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA), we evaluated the usefulness of spectral vegetation indices (VIs), to effectively monitor the Cerrado, detect land conversions, and discriminate and assess the conditions of the major structural types of Cerrado vegetation. Using a full hydrologic year (1995) of AVHRR, local-area-coverage (LAC), data over the Cerrado, converted to normalized difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI), we were able to spatially discriminate three major communities based on their phenologic patterns. These included savanna formations and pasture sites, forested areas, and agricultural crops. We also analyzed wet and dry season, aircraft-based radiometric data and a ground-based set of biophysical measurements, collected over the Brasilia National Park (BNP), the largest LBA core site in the Cerrado biome. Overall, we found the MODIS vegetation indices, which include a continuity NDVI and the new enhanced vegetation index (EVI), to provide better performance capabilities with improved dynamic ranges and contrasts in seasonal dynamics. Land cover discrimination was favored by the NDVI, while the EVI more strongly responded to the seasonal contrast of the vegetative cover. Thus, the synergistic use of the MODIS VI products will very likely result in an improved monitoring capability and understanding of the Cerrado biome.
346

Studies of arsenic, copper and lead in the soils of the Tamar Valley

Haswell, Stephen John January 1983 (has links)
No description available.
347

Spatial modelling of soil water drainage rates : a case study validated on a small catchment

Yao, Hengkai January 1996 (has links)
Traditionally, soil scientists have ignored the spatial dimension concentrating upon the physics of soil water movement at points/sites. The development of geographic information systems (GIS) provides an opportunity to develop soil-water models taking into account differences (spatially and temporally) in land cover and soil type. This thesis has attempted to integrate traditional soil water modelling within a GIS for estimating soil water drainage rates for a typical water catchment with spatially varied soil type and land cover. The Campbell soil model has been adopted for its simplicity and accuracy for estimating soil water infiltration/distribution. However, Campbell's model fails to take into account sufficiently the role of vegetation ininfiltration/distribution. The Meteorological Office Rainfall and Evaporation Calculation System provides effective ways of deriving potential evapotranspiration under various vegetated surfaces. The integration of these two models has resulted in the development of the Soil Water Drainage Model which is more accurate and capable of incorporating spatial soil and vegetation data. The model was developed and tested for the south-west Reading study area. The model's behaviour under various conditions was examined and its performance evaluated. It has found that a bare soil surface has a significant water drainage difference from a vegetated one and soil type affects soil drainage rate, especially when the soil is bare or abnormal climatic events occur. It has also shown that grassland reduces greatly the quantity of soil water loss as drainage and most drainage occurred in winter months and early spring. The accuracy of the model's prediction for estimating soil water drainage was validated on the small Winterbourne catchment (45km2) near Newbury, based on the catchment water mass equilibrium. The water drainage rates predicted by the model are reliable and consistent with the observed river discharge data. However, the results suggest a number of ways in which the methodology could be improved.
348

Evaluation of the feasibility for in situ bioremediation of mineral oil-contaminated soil

Chech, Andrea M. January 2003 (has links)
A greenhouse lysimeter experiment was performed to evaluate the use of in-situ bioremediation and phyto-remediation to reduce mineral oil concentrations in a weathered contaminated soil. The hypotheses for the study were (1) a combination of microbial- and phyto-remediation would yield a best remediation strategy, and (2) the addition of low levels (10 mg/L) of a biosurfactant would stimulate and increase the rate of remediation by increasing the bioavailability of the mineral oil in the soil. The results indicate, on average, a higher rate of mineral oil removal occurred in planted lysimeter tanks versus non-planted lysimeter tanks. Specifically, for unplanted treatments an average of 22% of the mineral oil was removed in 24 weeks in comparison to the planted treatments for which an average of 54% of the mineral oil was removed. The effect of application of fertilizer on mineral oil degradation was unclear, but a visual inspection showed that vegetated tanks receiving fertilizer had better growth. No conclusions can be made regarding the addition of biosurfactant. Though a couple of the lysimeter tanks receiving biosurfactant performed relatively well, overall, the results were inconclusive. Enumeration of mineral oil degraders showed that there was a statistical difference between planted tanks and unplanted tanks with planted tanks having higher numbers. These results help support the conclusion that plants enhanced mineral oil degradation. Enumeration of total heterotrophs showed that there was no statistical significant difference between the planted and unplanted treatments. In conclusion, this study demonstrated that a low-cost, low-maintenance approach to facilitate remediation of weathered mineral oil contaminated soil is a combination of microbial- and phyto-remediation.
349

Soil, groundwater, and alfalfa yield response to manure and compost applications in an arid environment

Tanksley, Koli January 2003 (has links)
The assessment of environmental degradation from farming practices has received recent attention due to the concern for sustainable agriculture. The United States Department of Agriculture and the Environmental Protection Agency have set forth the Unified National Animal Feeding Operation Strategy to protect the nation's water resources from contamination. The Unified Animal Feeding Operation Strategy requires that field application of manure, a common fertilization method and manure disposal practice, may not exceed crop nutrient needs. This requirement necessitates studies to determine how the multiple variables involved interact so that farmers may comply with the regulation. In this research, the effects of the application of manure, both fresh and composted, on a production alfalfa (Medicago sativa L.) field was examined. Manure and compost were applied to a production alfalfa field to determine the impact on alfalfa yield, soil nutrient content, and the potential for nitrate leaching. A conventional "no nitrogen added" treatment was also maintained as a control. Manure and compost were applied after each harvest in amounts such that the amount of nitrogen removed in the alfalfa harvest was replaced with the same amount of nitrogen in manure or compost. Application rates varied from 35 to 476 kg nitrogen ha⁻¹ after each harvest. It was found that the finer particles of the compost incorporated into the soil profile better than the chunky form of the manure. Soil analysis down to 150 cm depth showed that the compost treatment plots contained nearly 3000 kg total nitrogen ha⁻¹, the manure plots contained about 1750 kg ha⁻¹, and the no nitrogen plots had approximately 1400 kg ha⁻¹. Final PO₄-P soil analysis revealed that compost plots contained about 125 kg PO₄-P ha⁻¹, manure plots had approximately 115 kg ha⁻¹, and no nitrogen plots had only 20 kg ha⁻¹. Alfalfa yield did not vary between treatments throughout the one and a half year study. Also, no detectable nitrate or phosphate was found in the leachate collected from each of the treatments.
350

Electrokinetic management of nitrate movement in drip irrigated soils

Jia, Xinhua January 2004 (has links)
Nitrate contamination of surface and groundwater has become a serious concern in many agricultural areas throughout the world. The major source of nitrate contamination is believed to be nitrogen fertilizer from agricultural fields. Best Management Practices have been developed to guide fertilizer use and minimize nitrogen losses, but do not address control of nitrate movement from the crop root zone. It is proposed that an in-situ method, electrokinetics (EK), could be used to control nitrate movement, retaining it near the root zone. Lysimeter experiments were conducted to evaluate the effect of parallel electrodes on pH and nitrate distribution in field soils subjected to an electrical input. However, the expected results, increased nitrate retention, reduced sodium and calcium concentration and lower pH values near the anode, were not attained consistently in the test soils with and without Sudan grass. Small scale experiments in a vertical, partially saturated sandy soil column (25 cm height by 14 cm diameter) were conducted to evaluate the optimal EK parameters. After 80 mA current for 6 h the nitrate was retained near the anode, with the highest measured nitrate concentration of 7155 mg/L within 5 mm of the anode. The nitrate concentration at the cathode was 1/5 of the inflow solute concentration (221 mg/L). The pH was 11 near the cathode, 3.5 near the anode, and showed little changes in intermediate layers. The results demonstrate that in sandy soils nitrate can be strongly retained near the anode, even against gravity effect. As the percentage of illite clay in the soil increased, the EK effect decreased; due to the increase of fine clay particles both the transports of ions and the water were inhibited. The loam soil showed some increase in the nitrate concentration near the anode, but the clay soil showed no change. An increase of pH near the cathode was seen in all soils. The electrical potential analysis showed the sandy soil required the highest electrical potential 97.23 V, loam soil was 18.24 V and clay soil was 14.22 V.

Page generated in 0.0624 seconds