Spelling suggestions: "subject:"soil chemistry -- south africa"" "subject:"soil chemistry -- south affrica""
1 |
An initial investigation into key soil processes and associated influences on N and S cycles of grassland site near a coal-fired power station, Mpumalanga, South AfricaHutchinson, Lydia 02 May 2013 (has links)
A dissertation submitted to the faculty of Science, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science. / Unable to load abstract.
|
2 |
The nitrogen and sulfur status and isotopes of soils within the vicinity of a coal-fired power station in South AfricaAngelova, Mia 02 May 2013 (has links)
A dissertation submitted to the Faculty of Science, University of Witwatersrand, in
fulfilment of the requirements for the degree of Masters of Science
Johannesburg, 2012. / Amplified loads of sulfate and nitrate have caused increased stress on soil systems in many areas
of the world, as both are dominant components of acid rain. This is a critical environmental stress due
to the damage caused to soil, water quality and ecosystem functioning. Issues concerning the rising
emissions of these elements from local industries have begun to attract increasing attention in South
Africa, as the rates of deposition in the Mpumalanga Highveld region alone is comparable to those
experienced in First World countries. This study sought to investigate the use of natural stable isotopes
of sulfur and nitrogen to identify the process transformations that these species undergo in
environmental cycles. Total δ34S, δ15N and δ13C isotope signature of soils in the Mpumalanga region
were combined with total elemental concentrations to determine the effect of deposition on the soil
system. Soil samples from two soil depths (0 – 10 cm and 20 – 40 cm) were taken along a distance
gradient from an identified pollution source, the Majuba power station. Long-term air quality data
from the study area were also obtained from Eskom’s air quality monitoring stations, as well as sulfur
and nitrogen deposition data from selected literature.
Elemental concentrations decreased with soil depth as expected, while sites located
approximately 25 km downwind of the power station were seen to contain higher concentrations of
both soil sulfur and nitrogen. The mean per site soil sulfur concentration across all depths ranged from
0.009 % to 0.048 %, while the mean per site nitrogen concentration across all depths ranged
from 0.056 % to 0.346 %. The mean soil carbon concentration in the top-soils ranged from 0.97 % to
7.93 %, and decreased in the sub-soils to 0.490 % to 3.270 %.The mean δ34S value for the top-soils
was found to be 8.28 ‰ and increased to 10.78 ‰ in the sub-soils. Soil δ15N also increased with soil
depth from 6.55 ‰ to 8.28 ‰. Soil δ13C values were seen to increase from -12.83 ‰ in the top-soils to
-11.90 ‰ in the sub-soils. Lighter δ34S values at the surface may be due to anthropogenic deposition.
The positive δ34S shift was attributed to a two-source mixing model (atmospheric deposition and
bedrock) and isotopic fractionation processes that occur within the soil profile. The δ15N values of the
top-soil were higher than what is expected if all nitrogen was derived from atmospheric nitrogen gas
fixation. The increase in δ15N with depth suggested that isotope fractionation occurred during nitrogen
export due to the faster reaction rate of 14N compared to 15N. The soil δ13C values indicated a typical
C4 grassland system. New carbon at the top-soil depths was enriched in 13C due to the slower decay of
13C-depleted lignin; whereas in the sub-soils microbial recycling of carbon dominates and explained
the higher 13C content of the older carbon. The conceptual framework presented for this project
involves simultaneous processes of deposition and export in the soil system. This was particularly true
for sulfur, where sites with lower isotope values had lower soil sulfur concentrations and vice versa.
This indicates that high levels of deposition correspond to high net export. The sulfur and nitrogen
isotopic signatures could not be used to as a direct means of source identification; however, the
effectiveness of isotopes in elucidating transfer of these nutrients in the soil system was illustrated.
|
3 |
Occurrence and properties of iron and titanium oxides in soils along the eastern seaboard of South Africa.Fitzpatrick, Robert William. January 1978 (has links)
Abstract available on PDF file. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1978.
|
4 |
The concentration of selected trace metals in South African soilsHerselman, Jacoba Elizabeth 12 1900 (has links)
Thesis (PhD (Soil Science))--University of Stellenbosch, 2007. / Trace elements occur naturally in soils, usually at low concentrations (<0.1% or <1000 mg kg-1 of the earth’s crust), as a result of weathering and pedogenic processes acting on the rock fragments from which soil develops (parent material). Since about 98% of human food is produced on land, soil is the primary source supplying these elements to the food chain. Although cases of trace element deficiency and toxicity have been documented in many parts of South Africa, no comprehensive description of trace element concentration has yet been attempted for South Africa as a whole. The Natural Resources Land Type mapping project, initiated in the mid-1970s, has provided a collection of samples (approximately 4500) from soil profiles selected to represent the main soil forms in each land type and therefore to provide representative coverage of most of the soils of South Africa. These archived samples have now been analysed for a spectrum of trace elements, in terms of both available and total concentrations as well as other soil properties. Although detailed information is available on a wide range of trace metals, the seven trace metals considered to be of most interest in a South African context due to natural geological occurrences were selected for this study, including Cd, Co, Cr, Cu, Pb, Ni and Zn. This data was used to: • determine baseline concentrations in SA soils; • determining threshold values for South African agricultural soils receiving sewage sludge at agronomic rates; • determining the influence of certain soil properties on the baseline concentrations of these trace elements in SA soils; and • development of a bioavailable trace element distribution map for SA. The range, the mean and standard deviation (both arithmetic and geometric), and the median were used to summarize the data statistically. The baseline concentration range was calculated using the quotient and product of the geometric mean and the square of the geometric standard deviation, including data below the instrument detection limit. The upper limit of the baseline concentration range was set at the 0.975 percentile value of the population in order to minimize the influence of contamination and the lower limit at the 0.025 percentile value to minimize problems that might be associated with analytical uncertainty near the lower limit of detection. The quantile regression statistical approach was followed to illustrate the relationship between soil properties and trace element concentrations in soils. The soil properties that showed the strongest relation were CEC, clay content, pH (H2O) and S value (base status). The soils were then divided into different classes according to these soil properties and baseline concentrations were derived for the different classes. Soils with low clay contents have lower trace element concentrations than soils with higher clay contents, soils with low or high pH levels have lower trace element contents than soils with intermediate pH values and mesotrophic soils have higher trace element concentrations than dystrophic soils. This information is useful for the compilation of trace element distribution maps for South Africa where different soil forms and series/families could be classified into different classes to determine areas of potential deficiencies as well as toxicities. South Africa, with its diverse geology, has areas of both trace element toxicities and deficiencies and for decision-making purposes it is necessary to identify these areas. Mapping of trace element levels based on soil samples would provide valuable information, which cannot be obtained from geological or geographical maps. Statistical analyses of the data (clay %, base status, pH (H2O) and NH4EDTA extractable trace element concentrations) indicated that soils could be divided into five trace element classes based on their clay content, pH and base status (dystrophic, mesotrophic and eutrophic). The soil series according to the binomial soil classification system for South Africa were then divided into these different classes. The geometric means for each clay class were determined and the baseline concentration range for each class was calculated. The land type maps were used as basis for the distribution maps. A general trace element distribution map for South Africa was derived from this data as well as Cu and Zn distribution maps. A random selection of 500 soil samples across the country was used to verify the accuracy of the distribution map. The general trace element distribution map indicate, with a confidence level between 89 and 96%, where the potentially available trace element content of South African soils are low (deficient) too moderately high, excluding rocky areas and areas with limited soil. The Cu and Zn maps indicate the distribution and expected baseline concentrations of these specific elements in South African soils. The same methodology could be applied to derive risk maps for all the individual trace elements to indicate the distribution and expected baseline concentrations of the elements in South Africa. This presentation of baseline concentrations, reflecting likely natural ranges in South African soils, is the first quantitative report on the spatial extent and intensity of Zn, Cu and Co deficiency in South African soils. The proposal of new threshold values for trace elements in agricultural soils will be valuable in setting more realistic norms for environmental contamination that accommodate the geochemical peculiarities of the region, one example being rather high Cr and Ni concentrations with low bio-availability. This information should be of value not only in environmental pollution studies but also in health, agriculture, forestry and wildlife management. The following recommendations are made: • The baseline concentrations could be used to determine site specific threshold values based on soil properties and soil type. Soils with lower pH, clay content and CEC would require more protection than soils with high pH, clay content and CEC and therefore the threshold levels for these soils should be lower. • Although the distribution maps can be used to indicate broad areas of trace element deficiencies and toxicities, more detailed investigations are recommended for areas where problems are experienced. The same methodology could be applied on smaller scale to increase the value of the map and to add more value on a regional scale. The maps could be used for regional soil quality assessment especially in areas where trace element deficiencies or toxicities could result in negative effects on plants and animals.
|
5 |
The status of soil organic carbon under indigenous forests, grasslands, wetlands and pine plantations in Woodbush, Limpopo Province, South AfricaMongwe, Hlamalani Godfrey 12 1900 (has links)
Thesis (MScAgric)--University of Stellenbosch, 2004. / ENGLISH ABSTRACT: Storing soil organic carbon (SOC) is a possible way of reducing atmospheric
CO2 and potentially mitigating the effects of global warming. This study looks
at soil carbon stocks, the sampling methodology and modelling of soil organic
carbon in indigenous forests, wetlands, grasslands and pine plantations in
Woodbush in the North-Eastern escarpment of Limpopo Province, South
Africa. Dominant Pine species planted in Woodbush are Pinus patula, Pinus
elliotti and Pinus taeda. Woodbush plantation was selected as study area
because it provided easy access to all the ecosystems that were to be
studied. All ecosystems in Woodbush are located in such a way that it was
easy to compare them, as they existed under similar environmental and
climatic conditions. The climatic conditions of Woodbush promote
accumulation of SOC due to relatively higher precipitation and cooler
temperatures than most parts of Limpopo Province.
Five transects were made: two in indigenous forests and three in plantations.
Only the surface (0-7 cm) layer was sampled with a distance of 20 m between
sampling points. Transects were not made in grasslands and wetlands
because of the patchy occurrence of these ecosystems. In addition to
transects, eight 1ha plots, two in each ecosystem, were sampled. Surface (0-
7 cm depth) samples were collected on a grid of 20 x 20 m in each sampling
plot. Two soil profile pits were sampled in each sampling plot, with samples
being taken at 5, 10, 15, 20 30, 40, 50 60, 75 and 100 cm depth.
The average carbon stocks per hectare of land to a soil depth of 100 cm were
as follows: 71 t.ha-1 in wetlands, 28 t.ha-1 in grasslands, 64 t.ha-1in indigenous forests, and 46 t.ha-1 in pine plantations. Although wetlands sequestered large
amounts of SOC per hectare, their relative contribution to carbon
sequestration was low because of the relatively small area (87.2 ha) they
occupy in the study area (and in South Africa).
Prediction models for vertical distribution of SOC were developed using
STATISTICA 6.0 for each ecosystem in order to estimate the carbon stocks to
a depth of 100 cm based on SOC content and soil bulk density of the surface
samples. These models were developed from observed values in soil profiles
for each ecosystem.
SOC content and carbon stocks were analyzed using GIS (ARCVIEW). The
GIS analysis was aimed at assessing the effect of topography, elevation, soil
type, and vegetation on accumulation and distribution of SOC stocks. Most
shallow Inanda soils were distributed at elevations between 1545 m and
1777 m, and on a gentle slope in the Northern aspect of the mountain. Deep
Inanda soils were found mostly in the lower elevation range of 967 m and
1545 m on moderate slopes. Deep and shallow Inanda soils were found on
the southern aspect.
Deep Kranskop soils are evenly distributed and mostly found at an elevation
range of between 1080 and 1430 m on gentle slopes, while at an elevation
range of between 1430 and 1780 m, they were found on moderate slopes.
Deep soils had higher SOC stocks than shallow soils and soils in the southern
aspects had higher SOC stocks than in the northern aspects. / AFRIKAANSE OPSOMMING: Die berging van grond organiese koolstof is ‘n moontlike manier om
atmosferiese koolsuurgas (CO2) te verminder en dus om die invloed van
globale verwarming te versag. In hierdie studie was die grond-koolstof
voorraad bestudeer, asook die metodologie van die monsterneming en
modellering van organiese grond-koolstof van inheemse woude, vleie,
grasvelde en denneplantasies. Die studie was uitgevoer op Woodbush
plantasie gele op die Noord-Oosterlike platorand van die Limpopo Provinsie,
Suid-Afrika. Die algemeenste dennespesies in Woodbush is Pinus patula,
Pinus elliotti en Pinus taeda. Die Woodbush plantasie was gekies as
studiegebied omdat dit oor al die ekosisteme wat bestudeer moet word,
beskik. Die ekosisteme in Woodbush is naby mekaar en dus maklik
vergelykbaar want die omgewings- en klimaatstoestande is eenders. Die
klimaatstoestande van Woodbush bevorder die akkumulasie van grond
organiese koolstof omdat die reënval hoër en die temperature laer is as in die
meeste ander dele van die Limpopo Provinsie.
Vyf dwarssnitte was gemaak, twee in inheemse woude en drie in plantasies.
Monsters was net uit die grondoppervlak laag geneem (7 cm) met 20 m
tussen monsterpunte. Dwarssnitte was nie in grasvelde en vleie gemaak nie
want hierdie sisteme is te gelokaliseerd. Monsters was ook geneem in agt 1
ha persele, twee in elke ekosisteem. Oppervlakmonsters (tot ‘n diepte van
7 cm) is op ‘n ruitnet van 20 x 20 m uit elke perseel versamel. Monsters was
verder ook geneem uit twee profielgate per perseel, op dieptes 5, 10, 15, 20,
30, 40, 50, 60, 75 en 100 cm. Die gemiddelde koolstof voorraad per hektaar, op ‘n gronddiepte van 100 cm,
was as volg: 71 t.ha –1 in vleie, 28 t.ha-1 in grasvelde, 64 t.ha-1 in inheemse
woude en 46 t.ha-1 in denneplantasies. Alhoewel vleie groot hoeveelhede
grond organiese koolstof akkumuleer, is hulle bydrae tot koolstof akkumulasie
laag want hulle beslaan ‘n klein oppervlak binne die studiegebied (87.2 ha)
asook klein oppervlaktes binne Suid-Afrika.
Voorspellingsmodelle vir die vertikale verspreiding van grondkoolstof was met
die gebruik van STATISTICA 6.0 ontwikkel ten einde te skat wat die
koolstofvoorrraad op ‘n diepte van 100 cm was. Die skattings was gebaseer
op organiese grondkoolstofinhoud en die gronddigtheid van
oppervlakmonsters. Hierdie modelle was ontwikkel vanaf die waargenome
waardes van grondprofiele vir elke ekosisteem.
Die organiese koolstofinhoud van die grond en die koolstofvoorraad is ontleed
met behulp van GIS (ARCVIEW). Die GIS ontleding was daarop gemik om die
effek van topografie, hoogte bo seespiëel, grondtipe en plantegroei, op die
akkumulasie en verspreiding van organiese grondkoolstof, te beraam. Die
meeste vlak Inanda grondvorms kom voor tussen 1545 m en 1777 m bo
seespiëel, asook op effens steil hellings op die Noordelike berghang. Die
diep Inanda grondvorms is geleë op laer hoogtes bo seespiëel, gewoonlik
tussen 967 en 1545 m, op effens steil hellings. Beide diep en vlak Inanda
gronde word gevind op die suidelike berghang.
Diep Kranskop gronde is eweredig versprei en word gewoonlik tussen 1080
en 1430 m bo seespiëel, op effens steil hellings, gevind. Dit kom ook voor op
matig steil hellings, tussen 1430 en 1780 m bo seespiëel. Daar is meer organiese koolstof in diep grond as in vlak grond en meer in gronde teen die
suidelike hang as op die noordelike hang.
|
6 |
The effect of wood ash on the soil properties and nutrition and growth of Eucalyptus grandis x urophylla grown on a sandy coastal soil in ZululandScheepers, Gerhardus Petrus 12 1900 (has links)
Thesis (MScFor)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: A field trial of six replications was established to test the effect of various wood ash and fertilisers application rates on soil chemistry, tree nutrition and early growth rate of a clonal Eucalyptus grandis x urophylla stand. Wood ash from pulpmills is currently disposed of in landfills. Increasing costs and potential environmental risks have driven companies to investigate alternative disposal methods. Ash consists of a combination of carbonates, hydroxides and other calcium containing minerals that induce the liming effect if ash is applied to a soil. The trial was established near Richards Bay in October 2013 on a sandy soil with a low buffer capacity and a pH of approximately 5.5. The trial consists of four wood ash application rates in combination with three levels of fertiliser, viz. no fertiliser, 150 g conventional NPK fertiliser mixture, or 320g NPK controlled release mixture. Fertiliser mixtures and application levels were based on previous fertiliser trials in the region. Ash application rates for the field trial were based on a lab incubation study done with soil samples from Richards Bay, to which increasing amounts of lime were added. The study tested wood ash application rates of 0, 300, 600 and 1200 kg/ha. Field measurements were taken at 4 and 8 months after trial establishment. The primary objective was to investigate which application levels in combination with the type of fertiliser could be applied to soils without negatively affecting the stand nutrition or increase the levels of potentially harmful elements in the soil; thus investigating the feasibility of safely disposing wood ash on plantation soils as an alternative disposal method. Soil nutrient concentrations were not affected by individual wood ash treatments, but more a product of the time interval after the ash additions were made. Soil C, P, K+ and Mg2+ showed decreased concentrations from 4-8 months after establishment. Ca2+ concentrations increased in the same time interval. In addition, Na+ and B concentrations decreased from 4-8 months. Soil heavy metal concentrations for Cd, Hg, Cr and Pb, analysed for 0-1200 kg/ha ash rates, were well below toxic levels at both time intervals. Wood ash induced a temporary liming effect. Mean soil pH increased with 0.6 units for the period 0 - 4 months and decreased with 0.4 units at 4 - 8 months after trial establishment. Foliar nutrient analyses and assessment techniques revealed sub-optimal nutrient concentrations for P, K and Zn at 4 and 8 months of age. Concentrations were defined as sub-optimal, as none of the nutrients were below critical levels. Foliar heavy metal concentrations for Cd, Hg, Cr and Pb, measured at both time intervals, were less than 1mg/kg. The small concentrations found in this project were attributed to the low bioavailability of all four elements and were likely a product of the edaphic factors at Richards Bay, which was representative of a large greater portion of the Zululand coastal plain sites. The response in biomass index ranged between 13 % and 683 % relative to the control treatment (A0F0). Results showed that application of purely wood ash, or in combination with a supplementary N and P source increased growth up to 8 months after trial establishment for wood ash applications up to 1200 kg/ha. This project demonstrated that 1200 kg/ha wood ash can safely be disposed of on a typical Zululand coastal sand with little environmental risk and no supressed growth, provided that it is balanced with an appropriate NP fertiliser. / AFRIKAANSE OPSOMMING: ‘n Veldproef met ses herhalings is in Oktober 2013 uitgelê met die doel om die uitwerking van verskillende vlakke hout as en kunsmis toedienings op die grond-voedingstof status, boom-voedingstof status en die groei-tempo van ‘n Eucalyptus grandis x urophylla hibried plantasie te bestudeer. Hout as by pulpmeulens word tans weggegooi op stortingsterreine. Toenemende onkostes vir storting en die omgewingsrisiko’s gebonde aan stortingsterreine, dryf maatskappye om verbeterde en meer omgewingsvriendelike metodes te ondersoek om van die as ontslae te raak. Hout as bestaan uit ‘n reeks karbonate, hidroksiede en kalsium bevattende minerale en is verantwoordelik vir die bekalkingseffek op die grond na toediening. Die veldproef is geleë naby Richardsbaai op ‘n sanderige grond met n lae bufferkapasiteit en pH van ongeveer 5.5. Die proef het vier hout as vlakke getoets, gekombineer met drie vlakke van bemesting: geen, 150g konvensionele landbou kunsmis (CV) óf 320g beheerd-vrystellende kunmis (CRF). Die kunsmismengsels en vlakke van bemesting is gebaseer op bestaande of voltooide bemestingseksperimente in die streek. Hout as vlakke was bereken in gekontroleerde laboratorium toestande en gebaseer op ‘n inkubasie studie met grond monsters verkry vanaf Richardsbaai, waarby toenemende vlakke suiwer landboukalk gevoeg is. Die veldproef het hout as vlakke van 0, 300, 600 en 1200 kg/ha getoets. Veld metings is op 4 en 8 maande na behandeling geneem. Die primêre doelwit van die studie was om te bepaal watter vlak hout as en kunmis kombinasie toegedien kan word, sonder om die grond-voedingstof status negatief te beïnvloed of ‘n potensiële skadelike uitwerking op die plantasie groei te veroorsaak. Die uiteinde van die studie was om die haalbaarheid van hout as toedienings op plantasie gronde te bestudeer relatief tot die huidige praktyk van storting, insluitend die risiko van moontlike skadelike newe-effekte. Grondvoedingstatus was nie beduidend beïnvloed deur individuele hout as toevoegings nie, maar was eerder ‘n funksie van die tydsduur sedert behandeling. Grond koolstof, P anione, K+ en Mg2+ konsentrasies het beduidend afgeneem in die periode van 4 - 8 maande na behandling. Die Ca2+ konsentrasies het toegeneem tussen 4 en 8 maande en terselfdertyd het Na+ en B konsentrasies afgeneem. Die swaarmetaal status, spesifiek vir Cd, Hg, Cr en Pb, vir toevoegings van 0-1200 kg/ha hout as was beduidend laer as toelaatbare vlakke in gronde op albei tydsintervalle. Die hout as het ‘n tydelike toename in grond pH veroorsaak. Die gemiddelde pH het tussen 0 - 4 maande toegeneem met 0.6 eenhede en gedurende 4 - 8 maande afgeem met 0.4 eenhede.
Blaarontledings en voedingstof assesseringsmetodes het sub-optimale konsentrasies vir P, K en Zn getoon op die ouderdom van 4 en 8 maande. Voedingstof konsentrasies is as sub-optimaal geklassifiseer, omdat konsentrasies nooit laer as kritieke waardes vir gebreksimptome was nie. Die inhoud van Cd, Hg, Cr en Pb in blare was aansienlik kleiner as 1 mg/kg op albei tydsintervalle. Die merkwaardige lae konsentrasies wat in die projek aangeteken is, word toegekryf aan die lae bio-beskikbaarheid van al vier elemente as gevolg van die edafiese faktore eie aan die Richardsbaai omgewing (en ook aan groot dele van die Zoeloelandse kusvlakte). Die groeireaksie (bepaal as biomassa indeks op ouderdom 8 maande) het gewissel van 13 % - 683 % groter as die kontrole behandeling (A0F0). Resultate het bewys dat toedienings van suiwer hout as, of hout as gekombineer met ‘n addisionele N en P kunsmisbron die groei postief beïnvloed tot op die ouderdom van 8 maande. Die studie het bewys dat 1200 kg/ha hout as veilig toegedien kan word op die sandgronde van die kusgebiede in Zululand, met minimale omgewingsrisiko en geen tekens onderdrukte groei nie, mits dit gebalanseer word met ‘n geskikte NP kunsmisbron.
|
Page generated in 0.0656 seconds