• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 14
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 63
  • 63
  • 27
  • 21
  • 17
  • 16
  • 15
  • 15
  • 10
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Numerical modeling of consolidation of marine clay under vacuum preloading incorporating prefabricated vertical drains

Ho, Sao Man January 2010 (has links)
University of Macau / Faculty of Science and Technology / Department of Civil and Environmental Engineering
62

Finite element study of geosynthetic encased stone columns in sensitive soft clay

Zhang, Rongan, Engineering & Information Technology, Australian Defence Force Academy, UNSW January 2009 (has links)
Some normally consolidated soft soils manifest strength sensitivity, ie these soil manifest strain softening when shear in an undrained mode. These soils, referred to as sensitive soft soils, have the typical features of strain hardening in drained shearing and strain softening in undrained shearing. The consolidation lines of these soils are also curved (concave upwards) in the semi-log space. However, under high consolidation stress or upon large shearing, these soils re-gain the features of re-constituted soil. Ground improvement methods like stone columns were reported as not effective when installed in the sensitive soft clays. But mechanism of the un-effectiveness of the stone columns remains unknown because of lack of a suitable and simple model for simulating the stress-strain behaviours of sensitive soft soils. Although these soils have a meta-stable micro-structure, models that developed for simulating structured firm soils are not suitable for simulating sensitive soft soil features. Thus, a new model was formulated. The new model can degenerate back to a Modified Cam Clay model. The ability of new model in simulating a range of behaviour was verified by using the finite difference (FD) method in solving the partial differential equations of the soil model for a range of tri-axial test conditions. The model was further implemented in coupled analysis formulation and coded into FEM program AFENA. Various cases with different soil parameters were then simulated and compared with the FD solutions for various triaxial tests so as to check the stability of the FEM code. The coupled FEA was then used to simulate the performance of geosynthetic-encased stone columns. A new stone column element and a geo-encasement element were developed and coded into AFENA. The stone column simulations were then done for both non-sensitive soils (represented by Modified Cam Clay model) and sensitive soft soil (represented by the new model). Parametric study was conducted to examine the performance of the geo-encased stone columns in both types of soils. Furthermore, two different installation methods: wished-in installation and full displacement installation were studied numerically. Cross comparison was done to investigate how the sensitive soft soil features interact with the installation method in affecting the performance of the geo-encased stone columns. A range of factors that influence the geosynthetic-encased stone columns performance installed in soft soils were also made clear.
63

Numerical analysis of shallow circular foundations on sands

Yamamoto, Nobutaka January 2006 (has links)
This thesis describes a numerical investigation of shallow circular foundations resting on various types of soil, mainly siliceous and calcareous sands. An elasto-plastic constitutive model, namely the MIT-S1 model (Pestana, 1994), which can predict the rate independent behaviour of different types of soils ranging through uncemented sands, silts and clays, is used to simulating the compression, drained triaxial shear and shallow circular foundation responses. It is found that this model provides a reasonable fit to measured behaviour, particularly for highly compressible calcareous sands, because of the superior modelling of the volumetric compression. The features of the MIT-S1 model have been used to investigate the effects of density, stress level (or foundation size), inherent anisotropy and material type on the response of shallow foundations. It was found that the MIT-S1 model is able to distinguish responses on dilatant siliceous and compressible calcareous sands by relatively minor adjustment of the model parameters. Kinematic mechanisms extracted from finite element calculations show different deformation patterns typical for these sands, with a bulb of compressed material and punching shear for calcareous sand, and a classical rupture failure pattern accompanied by surface heave for siliceous sand. Moreover, it was observed that the classical failure pattern transforms gradually to a punching shear failure pattern as the foundation size increases. From this evidence, a dimensional transition between these failure mechanisms can be defined, referred to as the critical size. The critical size is also the limiting foundation size to apply conventional bearing capacity analyses. Alternative approaches are needed, focusing mainly on the soil compressibility, for shallow foundations greater than the critical size. Two approaches, 1-D compression and bearing modulus analyses, have been proposed for those foundation conditions. From the validations, the former is applicable for extremely large foundations, very loose soil conditions and highly compressible calcareous materials, while the latter is suitable for moderate levels of compressibility or foundation size. It is suggested that appropriate assessment of compression features is of great importance for shallow foundation analysis on sand.

Page generated in 0.1103 seconds