• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An integrated detection and identification methodology applied to ground-penetrating radar data for humanitarian demining applications

Lopera-Tellez, Olga 17 March 2008 (has links)
Ground penetrating radar (GPR) is a promising technique for humanitarian demining applications as it permits providing useful information about the subsurface based on wave reflections produced by electromagnetic (EM) contrasts. Yet, landmine detection using GPR can suffer from: (1) clutter, i.e, undesirable effects from antenna coupling, system ringing and soil surface and subsurface reflections; (2) false alarms, e.g., reflections from buried mine-like objects such as stones or metallic debris; (3) effects of soil properties on the GPR performance, such as attenuation. This thesis addresses these topics in an integrated approach aiming at reducing clutter, identifying landmines from false alarms and analysing GPR performance. For subtracting undesirable reflections, a new physically-based filtering algorithm is developed, which takes into account major antenna effects and soil surface reflection. It is applied in conjunction with a change detection algorithm for enhancing landmine detection. Landmine identification is performed using discriminant characteristics extracted from the pre-filtered data by a novel feature extraction approach in the time-frequency domain. For analysing the effects of soil properties, in particular soil dielectric permittivity, an EM model is coupled to pedotransfer functions for estimating the GPR performance on a given soil. The developed algorithms are validated using data acquired by two different hand-held GPR systems. Promising results are obtained under laboratory and outdoor conditions, where different types of soil (including real mine-affected soils) and landmines (including improvised explosive devices) are considered.
2

An integrated detection and identification methodology applied to ground-penetrating radar data for humanitarian demining applications

Lopera-Tellez, Olga 17 March 2008 (has links)
Ground penetrating radar (GPR) is a promising technique for humanitarian demining applications as it permits providing useful information about the subsurface based on wave reflections produced by electromagnetic (EM) contrasts. Yet, landmine detection using GPR can suffer from: (1) clutter, i.e, undesirable effects from antenna coupling, system ringing and soil surface and subsurface reflections; (2) false alarms, e.g., reflections from buried mine-like objects such as stones or metallic debris; (3) effects of soil properties on the GPR performance, such as attenuation. This thesis addresses these topics in an integrated approach aiming at reducing clutter, identifying landmines from false alarms and analysing GPR performance. For subtracting undesirable reflections, a new physically-based filtering algorithm is developed, which takes into account major antenna effects and soil surface reflection. It is applied in conjunction with a change detection algorithm for enhancing landmine detection. Landmine identification is performed using discriminant characteristics extracted from the pre-filtered data by a novel feature extraction approach in the time-frequency domain. For analysing the effects of soil properties, in particular soil dielectric permittivity, an EM model is coupled to pedotransfer functions for estimating the GPR performance on a given soil. The developed algorithms are validated using data acquired by two different hand-held GPR systems. Promising results are obtained under laboratory and outdoor conditions, where different types of soil (including real mine-affected soils) and landmines (including improvised explosive devices) are considered.

Page generated in 0.3843 seconds