• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cycling of fertiliser-derived N in a Sitka spruce ecosystem after 15N-urea application

Burns, Lisa C. January 1992 (has links)
Low recovery rates of fertiliser N in tree biomass are frequently reported due to the inefficiency of N fertilisers in afforested ecosystems. At Culloden (North East Scotland), only 13&'37 of 15N-urea fertiliser applied to Sitka spruce could be recovered in the above-ground tree biomass two years after fertilisation. Fertiliser N not taken up by trees was largely 'locked-up' in stable organic forms of N within the LFH layers of the soil profile. 15N-labelled litter was used in both field and microcosm experiments, the release and fate of litter-derived-N (LDN) being traced over the course of two growing seasons. In both experiments, the microbial biomass acted as a major sink for LDN. Measurement of soil microbial biomass was calibrated for Culloden soil samples by determination of a kEN-factor. Tree uptake of LDN, in the field, occurred within one month of labelled-litter application, with the foliage being the largest sink for LDN. Approximately 30&'37 of the N within the labelled-litter layer was taken up by the trees over the course of two growing seasons and was equivalent to 5.4 kg LDN ha-1 y-1. There was considerable mixing of the LFH and peat layers in Sitka spruce microcosm soil profiles. This was probably due to elevated soil animal population densities. After 18 months, approximately 83&'37 of LDN had been redistributed to other N pools in the microcosm. Uptake of LDN by seedlings accounted for 15.7&'37 of LDN after 12 months, the largest sink being the foliage, equivalent to 6.16 kg LDN ha-1 y-1. Again, the microbial biomass was a major sink for LDN. Measurement of availability (NH4+) N in Culloden soil samples incubated at different matric potentials and temperatures, appeared not to reflect N mineralisation rates. There was a strong interaction between temperature and soil matric potential, seedling uptake of N being greatest at 15oC and -16.0 kPa. The rate of turnover of the microbial biomass pool was identified as the key determinant of the rate of processing of LDN in forest soils.
2

Effects of two-year nutrient loading on microbial community and N transformations in mineral and organic soils of wet meadows / Effects of two-year nutrient loading on microbial community and N transformations in mineral and organic soils of wet meadows

MACH, Jiří January 2010 (has links)
This study observes an influence of two-year application of NPK fertilizer on the amount of soluble nitrogen, microbial N transformations, and microbial biomass and the composition of microbial community in mineral and organic soils of two wet meadows. This study is the first version of manuscript, supplemented with a wider literature review, which will be submitted in 2010.
3

Impacts of land-use conversion in Sumatra, Indonesia on soil nitrogen cycling, soil nutrient stocks and ecosystem dynamics

Allen, Kara 28 September 2015 (has links)
Innerhalb der letzten zwei Jahrzehnte ist die Entwaldungsrate auf Sumatra, Indonesien stark gestiegen, dies geht einher mit eine Umwandlung von Tieflandwäldern in Ölpalm- (Elaeis guineensis) und Kautschukmonokulturplantagen (Hevea brasiliensis). Es wurde festgestellt, dass Landnutzungsänderungen in landwirtschaftlichen Systemen die Bodennährstoffbestände sowie die Umsatzrate von Bodennährstoffen senkt, dies kann zu einer Abhängigkeit vom Einsetzen von Düngemitteln führen, die nur eine zeitweise Verfügbarkeit von Nährstoffen gewährleistet. Des Weiteren bedroht die Umwandlung von Wald in Monokulturen die hohe Biodiversität, welche in tropischen Wäldern vorherrscht, was wiederum die Funktionsweise des Ökosystems beeinflusst. Der Schwerpunkt dieser Arbeit lag darin, die Auswirkungen der Landnutzungsänderung auf Bodennährstoffhaushalt und Ökosystemdynamiken festzustellen, sowie die Mechanismen die für die Veränderungen verantwortlich sind zu verstehen. Alle Drei Studien waren Teil eines großen interdisziplinären Projekts welches die ökologischen und sozialen Effekte von tropischen Landnutzungsveränderungen untersucht. Die Probenentnahme für jede Studie erfolgte in der Region von Jambi auf Sumatra, Indonesien – ein Gebiet das früher dicht bewaldet war, aber eine starke Entwaldung erfahren hat. Es wurden zwei Landschaften ausgesucht, die sich über ihre vorherrschende Bodentextur und ihren Bodentyp definieren und die Region natürlich repräsentieren: zum einen waren dies lehmige Acrisole und zum anderem tonige Acrisole. In den beiden Bodenlandschaften wurden vier Systeme untersucht: Tieflandregenwald und regenerierter Wald durchsetz mit Kautschukbäumen (hier benannt als „Jungle-rubber“) sowie Monokulturen von Kautschuk (Sein bis 17 Jahre alt) und Ölpalmen (Neun bis 16 Jahre alt). Das Ziel der ersten Studie war zu bewerten, wie sich die Umsatzrate von Stickstoff (N) im Boden in Bezug auf die Umwandlung von Wald in Kautschuk- und Ölpalmplantagen verändert. Die Bruttoumsatzrate von Stickstoff im Boden wurde mit der 15N-Verdünnungsmethode mit in situ Inkubation der Bodenbohrkerne bestimmt. In den Lehm-Acrisolen, in denen die Bodenfruchtbarkeit gering war, waren auch die mikrobielle Biomasse, die Bruttostickstoffmineralisation und die Immobilisierung von Ammonium (NH4+) gering und es wurden keine signifikanten Veränderungen durch die Landnutzung aufgezeigt. Die Ton-Acrisole welche eine höhere Ausgangsfruchtbarkeit, bezogen auf die Referenzflächen, aufwiesen, waren auch einen höheren Anteil an mikrobielle Biomassen sowie durch höhere NH4+-Umwandlungsraten im Vergleich zu den Lehm-Acrisolen gekennzeichnet. In den Ton-Acrisolen hat die Umwandlung von Wald und Jungle-rubber in Kautschuk- und Ölpalmplantagen zu einer Verringerung der Bodenfruchtbarkeit geführt, was wiederum zu einer Reduzierung der mikrobiellen Biomasse und der NH4+-Umwandlungsraten beigetragen hat. Unsere Ergebnisse lassen annehmen, das je höher die Ausgangsbodenfruchtbarkeit und Stickstoffverfügbarkeit im Boden ist, desto höher ist die Reduktionen durch die Landnutzungsänderungen. Das Ziel der zweiten Studie war es, Veränderungen biochemischer Charakteristika des Bodens sowie des Nährstoffbestandes bis 2 m Bodentiefe in den verschiedenen Landnutzungssystemen zu erfassen und die Proportionen der Gesamtvarianz der biochemischer Bodencharakteristika zu bestimmen, die durch die räumlichen Komponenten in unserem experimentellem Design hervorgerufen werden. Der Tongehalb beeinflusst die Bodenfruchtbarkeit und die größeren Nährstoffbestände wurden in den Referenzflächen der Ton-Acrisolen gefunden. Bewirtschaftungspraktiken in den veränderten Landnutzungssystemen übten den größten Einfluss auf Boden-pH, Basensättigung, extrahierbaren Phosphor und austauschbares Natrium aus. Die Mehrheit der biochemischen Bodencharakteristika und der Nährstoffbestände wurden nicht signifikant durch Landnutzungsänderungen verändert. Basierend auf der Varianzkomponentenanalyse der verschachtelten räumlichen Struktur des experimentellen Designs, wurde die Gesamtvarianz von vielen biochemischen Bodencharakteristika durch die Abweichungen zwischen replizierten Plots und nicht durch die unterschiedliche Landnutzung erklärt. Dieses Ergebnis deutet darauf hin, dass wenn man signifikante Effekte von Landnutzungsänderungen auf biochemische Bodencharakteristika feststellen will, die Stichprobenzahl replizierter Plots pro Landnutzungssystem erhöht werden muss. Das Ziel der dritten Studie war es, zwischen direkten Landnutzungseffekten und indirekten „Bottom-up“-Effekten auf ober- und unterirdisch lebende Taxa zu differenzieren. Es wurden allgemeine „Multilevel path“- Modelle (eine Form von Strukturgleichungsmodellen), die eine Berechnung direkter und interaktiver Effekte von Landnutzung mit abiotischen Variablen und „Bottom-up“-Effekten zwischen biotischen Variablen zulassen, auf der Basis von Daten von Pflanzen, Mikroorganismen, Invertebraten der Streuschicht, baumbewohnende Ameisen, Vögeln und Umweltparametern (Boden- und Mikroklimaeigenschaften) entworfen. Die Ergebnisse der „Multilevel path“- Modelle zeigen, dass die Landnutzungsänderungen direkte Effekte auf Pflanzen, unterirdisch lebende Taxa einer niedrigen trophischen Ebene (z.B. Saprobionten und Herbivoren) und baumbewohnende Ameisen haben, fast alle Landnutzungsauswirkungen auf höhere trophische Ebenen von Invertebraten und Vögel waren jedoch „Bottom-up“-kontrolliert. Diese Studie lässt erkennen, dass Landnutzungsveränderungen, direkt und indirekt, ökologische Verschiebungen im großen Rahmen lenken. Die gefundenen Effekte auf höhere trophische Ebenen sind jedoch meistens von den Organismen der darunterliegenden trophischen Ebenen abhängig. Die Stickstoffumsatzraten im Boden und der Umfang der Stickstoffpools, welche in der ersten Studie gemessen wurden, wurden parallel mit Studien zur Stickstoffoxidemission und Stickstoffauswaschung des Bodens durchgeführt, um ein ganzheitliches Bild des Stickstoffhaushaltes in den veränderten Landschaft zu erhalten. Analysen zur Probenoptimierung wurden für die biochemischen Bodencharakteristika der oberen Bodenschicht bis 0,5 m aus der zweiten Studie durchgeführt, um festzustellen was die minimale Anzahl an Replikaten pro Landnutzungstyp ist, um signifikante Unterschiede zwischen den Landnutzungssystemen in unserem experimentellen Design festzustellen. Die Bodenkomponenten die in die „Multilevel path“- Modelle integriert waren, wurden erfasst und direkte Zusammenhänge zwischen diesen Bodeneigenschaften und der Biodiversität des Ökosystems und den Biomassen wurden untersucht, um ein besseres Verständnis davon zu bekommen, welche Rolle Bodennährstoffbeständen für die transformierten Systeme spielen. Insgesamt zeigen die Ergebnisse der drei Studien, dass die Bodennährstoffbestände eine wichtige Komponente des Ökosystems darstellt und Veränderungen der Bodennährstoffbestände durch Landnutzungsänderungen Auswirkungen auf die Biodiversität und die Funktionsweise des Ökosystems haben können.

Page generated in 0.0898 seconds