• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pedogenesis & Carbon Dynamics Across a Lithosequence Under Ponderosa Pine

Heckman, Katherine Ann January 2010 (has links)
Three studies were completed to investigate the influence of mineral assemblage on soil organic carbon (SOC) cycling and pedogenesis in forest soils. Two studies utilized a lithosequence of four parent materials (rhyolite, granite, basalt, limestone/volcanic cinders) under Pinus ponderosa, to explicitly quantify the contribution of parent material mineral assemblage to the character of the resulting soil. The first study explored variation in pedogenesis and elemental mass loss as a product of parent material through a combination of quantitative X-ray diffraction and elemental mass balance. Results indicated significant differences in degree of soil development, profile characteristics, and mass flux according to parent material.The second study utilized the same lithosequence of soils, but focused on organic C cycling. This study explored variation in SOC content among soils of differing mineralogy and correlations among soil physiochemical variables, SOC content, soil microbial community composition and respiration rates. Metal-humus complex and Fe-oxyhydroxide content emerged as important predictors of SOC dynamics across all parent materials, showing significant correlation with both SOC content and bacterial community composition. Results indicated that within a specific ecosystem, SOC dynamics and microbial community vary predictably with soil physicochemical variables directly related to mineralogical differences among soil parent materials.The third study focused specifically on the influence of goethite and gibbsite on dissolved organic matter characteristics and microbial communities which utilize DOM as a growth substrate. Iron and aluminum oxides were selected for this study due to their wide spread occurrence in soils and their abundance of reactive surface area, qualities which enable them to have a significant effect on SOC transported through forest soils. Results indicated that exposure to goethite and gibbsite surfaces induces significant differences in DOM quality, including changes in thermal properties, molecular structure, and concentrations of P and N. Investigation of the decomposer communities indicated that exposure to goethite and gibbsite surfaces caused significant differences in microbial community structure.These investigations emphasize the important role of mineral assemblage in shaping soil characteristics and regulating the cycling of C in soils, from the molecular scale to the pedon scale.
2

Soil carbon dynamics at Hillslope and Catchment Scales

Martinez, Cristina January 2010 (has links)
Research Doctorate - Doctor of Philosophy (PhD) / Amidst growing concerns about global warming, efforts to reduce atmospheric CO2 concentrations (i.e. C sequestration) have received widespread attention. One approach to C sequestration is to increase the amount of C stored in terrestrial ecosystems, through improved land management. Terrestrial ecosystems represent a critical element of the C interchange system, however a lack of understanding of the C cycle at regional and sub-regional scales means that they represent a source of primary uncertainty in the overall C budget. This thesis aims to address this deficiency by developing an understanding of catchment-scale processes critical for accurate quantification of C in the landscape. An investigation into the spatial and temporal dynamics of soil organic carbon (SOC) was conducted for a 150ha temperate grassland catchment in the Upper Hunter Valley, New South Wales, Australia. The major factors controlling the movement, storage, and loss of SOC were investigated, including climate, vegetation cover, soil redistribution processes, topography, land use, and soil type. This study falls into four broad areas. In the first part of this study the spatio-temporal dynamics of soil moisture and temperature at the catchment scale are assessed for a range of soil depths. Data recorded from a network of monitoring sites located throughout the study catchment was compared with independently derived soil moisture and temperature data sets. The data indicates that soil moisture and temperature in surface soil layers were highly dynamic, in their response to rainfall and incoming solar radiation, respectively. Deeper soil layers however were less dynamic, with longer lag times observed with increasing soil depth, as topography, soil type, and landscape position were the dominant controlling factors. Climate related variables are important factors affecting plant growth and net primary productivity. The second part of the study quantified spatial and temporal vegetation patterns using both field-based measurements of above-ground biomass and remotely sensed vegetation indices from the MODIS and Landsat TM 5 platforms. A strong and statistically significant relationship was found between climate variables and MODIS derived NDVI, leading to the development of a predictive vegetation cover model using ground-based soil moisture, soil temperature, and sunshine hours data. The ability of remotely sensed data to capture vegetation spatial patterns was found to be limited, while it was found to be a good predictor of temporal above-ground biomass trends, enabling net primary productivity to be quantified over the three-year study period. In the third part of the thesis soil redistribution patterns and erosion rates were quantified using the caesium-137 method and empirical and physically-based modelling approaches. The impact of soil redistribution processes on SOC distribution was investigated, and the amount of erosion derived SOC loss quantified. A significant proportion of SOC stored within the catchment was found below a soil depth of 0.30m, which is the depth of sampling set out in the IPCC and Australian Greenhouse Office guidelines for carbon accounting. Soil depth was identified as a key factor controlling the spatial distribution of SOC, which is in turn determined by position in the landscape (i.e. topography). The fourth and final part of the study describes how data on erosion derived SOC loss were used in conjunction with net primary productivity estimates, to establish a SOC balance. This involved mapping the spatial distribution of SOC using a high resolution digital elevation model of the catchment, in conjunction with soil depth measurements, and quantifying the total SOC store of the catchment. It was observed that temporal changes in SOC were minimal over the limited three-year study period, however, the continuity of catchment management practices over the previous decades suggest that steady-state conditions have perhaps been reached. The study concludes that the key to increasing the amount of SOC and enhancing carbon sequestration in the soil, is to increase the amount of SOC stored at depth within the soil profile, where factors such as soil moisture and temperature, which control decomposition rates, are less dynamic in space and time, and where SOC concentrations will be less vulnerable to changes occurring at the surface in response to global warming and climate change.
3

Nitrogen Fertilization Impacts on Soil Organic Carbon and Structural Properties under Switchgrass

Jung, Ji Young 01 November 2010 (has links)
No description available.
4

Soil organic carbon (SOC) now and in the future. Effect of soil characteristics and agricultural management on SOC and model initialisation methods using recent SOC data

Nemoto, Rie 19 December 2013 (has links) (PDF)
Soil organic carbon (SOC) concentrations and greenhouse gas (GHG) emissions are not uniform across the landscape, but assemble in "hotspots" in specific areas. These differences are mainly driven by human-induced activities such as agricultural management. 40-50% of the Earth's land surface is under agricultural land-use, for instance cropland, managed grassland and permanent crops including agro-forestry and bio-energy crops. Furthermore, 62% of the global soil C stock is SOC and the soil stores more than 3 times more C than the atmosphere. Thus, C sequestration in agricultural soil has a potentially important role in increasing SOC storage and GHG mitigation, and there is considerable interest in understanding the effects of agricultural management on SOC and GHG fluxes in both grasslands and croplands, in order to better assess the uncertainty and vulnerability of terrestrial SOC reservoirs. For the sake of discovering the agricultural management practices relating to the effective and sustainable C sequestration in agricultural lands in Europe, simulating future terrestrial C stocks and GHG budgets under varied agricultural management systems in major European ecosystems is essential. Using models is a useful method with the purpose of this and abundant studies have carried out. However, many model results have not been validated with reliable observed long-term data, while other studies have reported a strong impact of model initialisation on model result. Nevertheless, predictions of annual to decadal variability in the European terrestrial C and GHG ressources largely rely on model results. Consequently, finding the most appropriate and comprehensive model initialisation method for obtaining reliable model simulations became important, especially for process-based ecosystem models. In recent years, Zimmermann et al. (2007) have succeed in initialising the Rothamsted Carbon model (RothC) using a physical and chemical soil fractionation method. For that reason, we hypothesised that measured detailed SOC data would be useful to initialise ecosystem models, and this hypothesis should be tested for different process-based models and agricultural land-use and management. (...)
5

Soil organic carbon (SOC) now and in the future. Effect of soil characteristics and agricultural management on SOC and model initialisation methods using recent SOC data / Le carbone du sol maintenant et dans le futur. Impact de gestion agricole et importance de l'initialisation des modèles

Nemoto, Rie 19 December 2013 (has links)
La concentration de Carbone organique de sol (COS) et les émissions de gaz à effet de serre (GES) ne sont pas uniformes à travers l’espace, mais se regroupent en “hotspots” dans des endroits spécifiques. Ces différences s’expliquent principalement par les activités anthropiques telles que la gestion agricole. 40-50% de la surface de la Terre est utilisé par l’agriculture, par exemple les terres cultivées, les prairies gérées et cultures permanentes, y compris l’agro-foresterie et de bio-cultures énergétiques. En outre, 62% du carbone globale est COS, et le sol conserve plus que 3 fois plus de C que l’atmosphère. Ainsi, la séquestration du carbone dans les sols agricoles joue un rôle potentiellement important dans l’augmentation de stockage de COS et l’atténuation des GES, et il y a un intérêt considérable pour comprendre les effets de la gestion agricole sur le COS et les flux de GES aux prairies et terres cultivées, afin de mieux évaluer l’incertitude et la vulnérabilité des réservoirs de COS. Afin de découvrir les pratiques de gestion agricole qui contribuent à la séquestration efficace et durable du carbone aux terres agricoles en Europe, il est essentiel de simuler les stocks futurs de carbone terrestriel et les budgets de GES par rapport aux systèmes de gestion agricole variés sur les grands écosystèmes européens. Dans ce contexte, la modélisation est une méthode utile, et la modélisation a déjà été utilisée dans beaucoup d’études. Cependant beaucoup de résultats de la modélisation n’ont pas encore été validés avec les données mesurées sur l’horizon long-terme, et d’ailleurs d’autres études ont constaté un fort impact de l’initialisation du modèle sur le résultat du modèle. Néanmoins, la variabilité des prévisions annuelles et décennales concernant le C et le GES en Europe dépendent des résultats du modèle. Par conséquence, il est important de trouver la meilleure méthode d’initialisation des modèles pour obtenir des résultats des modèles fiables, notamment pour les modèles d’écosystèmes dits “process-based”. Au cours des dernières années, Zimmermann et al. (2007) a réussit à initialiser le modèle de Rothamsted carbone (RothC) en utilisant une méthode (physique et chimique) de fractionation des sols. Pour cette raison, j’ai fait l’hypothèse que les données COS détaillées seraient utiles pour initialiser des modèles d’écosystème, et que cette hypothèse doit être testée avec les modèles différents par rapport aux gestions agricoles différentes. Les buts de cette thèse sont les suivants: i) évaluation des influences des gestions agricoles sur le stockage de COS, en utilisant des approches expérimentales et des approches de modélisation; et ii) déterminer la meilleur méthode d’initialisation des modèles. (...) / Soil organic carbon (SOC) concentrations and greenhouse gas (GHG) emissions are not uniform across the landscape, but assemble in “hotspots” in specific areas. These differences are mainly driven by human-induced activities such as agricultural management. 40-50% of the Earth’s land surface is under agricultural land-use, for instance cropland, managed grassland and permanent crops including agro-forestry and bio-energy crops. Furthermore, 62% of the global soil C stock is SOC and the soil stores more than 3 times more C than the atmosphere. Thus, C sequestration in agricultural soil has a potentially important role in increasing SOC storage and GHG mitigation, and there is considerable interest in understanding the effects of agricultural management on SOC and GHG fluxes in both grasslands and croplands, in order to better assess the uncertainty and vulnerability of terrestrial SOC reservoirs. For the sake of discovering the agricultural management practices relating to the effective and sustainable C sequestration in agricultural lands in Europe, simulating future terrestrial C stocks and GHG budgets under varied agricultural management systems in major European ecosystems is essential. Using models is a useful method with the purpose of this and abundant studies have carried out. However, many model results have not been validated with reliable observed long-term data, while other studies have reported a strong impact of model initialisation on model result. Nevertheless, predictions of annual to decadal variability in the European terrestrial C and GHG ressources largely rely on model results. Consequently, finding the most appropriate and comprehensive model initialisation method for obtaining reliable model simulations became important, especially for process-based ecosystem models. In recent years, Zimmermann et al. (2007) have succeed in initialising the Rothamsted Carbon model (RothC) using a physical and chemical soil fractionation method. For that reason, we hypothesised that measured detailed SOC data would be useful to initialise ecosystem models, and this hypothesis should be tested for different process-based models and agricultural land-use and management. (...)
6

Caractérisation et stabilité de la matière organique du sol en contexte montagnard calcaire : proposition d'indicateurs pour le suivi de la qualité des sols à l'échelle du paysage / Characterization and stability of soil organic matter in calcareous mountain : proposal of indicators for soil quality monitoring at the landscape scale

Saenger, Anaïs 16 April 2013 (has links)
Les sols de montagne représentent d'importants réservoirs de carbone (C) potentiellement vulnérables aux changements climatiques et changements d'usage qui les affectent de manière amplifiée. Or la grande variabilité de ces milieux, leur faible accessibilité ainsi que le manque d'outils de mesure appropriés limitent nos connaissances qui restent aujourd'hui très fragmentaires en ce qui concerne les stocks, la chimie et la réactivité du carbone organique des sols (COS). Ces informations sont pourtant nécessaires pour appréhender l'évolution de ces sols et de leur C dans ce contexte de changements globaux. Les objectifs de ce travail de thèse étaient (i) d'accéder à une meilleure compréhension de la nature, de la stabilité et de la vulnérabilité du COS dans une mosaïque d'écosystèmes des Préalpes calcaires (massif du Vercors), (ii) de rechercher des outils de caractérisation rapides et fiables adaptés à l'étude et au suivi du COS à l'échelle du paysage, et enfin (iii) de proposer des indices pour l'évaluation et le suivi de la qualité des sols en milieu de montagne. Dans un premier temps, nous avons testé l'application de la pyrolyse Rock-Eval pour l'étude du COS à grande échelle sur un ensemble d'unités écosystémiques. Nous avons ensuite comparé la pyrolyse Rock-Eval à deux techniques classiques d'étude de la matière organique du sol (MOS) : le fractionnement granulodensimétrique de la MOS et la spectroscopie moyen infrarouge. Ces approches analytiques couplées nous ont permis de quantifier les stocks de C à l'échelle de la zone d'étude et d'expliquer la stabilité et la vulnérabilité du COS sous des angles variés. Les facteurs responsables des patrons observés dans les différentes unités écosystémiques sont discutés. Ce travail a également confirmé la pertinence de l'outil Rock-Eval pour répondre aux objectifs fixés. Parallèlement, des approches biologiques nous ont permis d'évaluer l'importance de la composante microbienne dans ces sols. Enfin, des indices évaluant le statut organique des sols (stockage de COS, fertilité des sols, vulnérabilité du COS) sont proposés pour constituer des outils de gestion et d'aide à la décision. / Mountain soils are major reservoirs of carbon (C), potentially vulnerable to climate and land use changes that affect them significantly. However, the great variability of these soils, their limited accessibility and the lack of appropriate measurement tools restrict our knowledge. Today, our comprehension of the biogeochemistry of mountain soils remains very incomplete regarding stocks, chemistry and reactivity of soil organic carbon (SOC). Yet this information is necessary to understand the evolution of soil carbon in the current context of global change. The objectives of this work were (i) to gain a better understanding of the nature, stability and vulnerability of SOC in a mosaic of ecosystems in a calcareous massif in the Alps (Vercors massif), (ii) to search for fast and reliable characterization tools, suitable for the study and monitoring of COS at the landscape scale, and (iii) to propose indicators for the assessment and monitoring of soil quality in mountain regions. As a first step, we tested the application of Rock-Eval pyrolysis for the study of COS at large-scale on a set of ecosystem units. Then, we compared the Rock-Eval approach to two conventional techniques for soil organic matter (SOM) study: the particle-size fractionation of SOM, and the mid-infrared spectroscopy. These coupled analytical approaches allowed us to quantify C stocks across the study area, and explain the stability and the vulnerability of COS at various angles. Factors responsible for the patterns observed in the different eco-units are discussed. This work also confirmed the relevance of the Rock-Eval tool to achieve our previous objectives. Biological approaches allowed us to assess the significance of microbial pool in these soils. Finally, indices assessing the status of SOM (SOC storage, soil fertility, vulnerability COS) were proposed and constituted interesting management tools for decision-makers.

Page generated in 0.071 seconds