• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The development of piping erosion

Jones, Neil Owen January 1968 (has links)
No description available.
2

On the mechanism of piping under impervious structures /

Sellmeijer, Joannes B. January 1988 (has links)
Thesis (Ph. D.)--Technische Universiteit Delft, 1988. / Vita. Includes bibliographical references.
3

Woody plant encroachment effects on the hydrological properties of two contrasting soil types in Bela-Bela, Limpopo Province

Mashapa, Rebone Euthine January 2021 (has links)
Thesis (M.Sc. Agriculture (Soil Science)) -- University of Limpopo, 2021 / Woody plant encroachment results in the degradation of grasslands. It is defined here as the increase in density, cover and biomass of woody plants into formerly open grasslands, reducing grassland productivity. Globally, many arid and semi-arid savanna grasslands are affected by this land cover transformation which changes the vegetation structure by altering the ratio of woody plants relative to grass species and influences soil hydrology. In the existing literature there is limited information on the effects of woody plant encroachment on soil physical and hydrological properties, especially in savanna grasslands. This study quantified and compared the soil physical and hydrological properties in the topsoil and subsoil of open and woody plant encroached grassland sites located on two contrasting soil forms, namely Bainsvlei and Rensburg. To achieve this objective, the two soils were sampled at various depth intervals from dug soil profiles at both sites at Towoomba Research Station in Bela Bela, Limpopo Province, South Africa. Soil physical properties including bulk density, porosity and aggregate stability as well as hydrological properties (water retention and hydraulic conductivity) were determined from collected samples. Compared to open grassland, soil bulk density was 11% and 10% greater in the topsoil and subsoil, while porosity was respectively 6% and 9% lower in the topsoil and subsoil of woody plant encroached grassland for Rensburg soils. In Bainsvlei soil, there was a minimal increase and decrease in the soil bulk density and porosity, respectively. Soil aggregate stability increased by 38% in the subsoil of woody plant encroached grasslands in Rensburg soil, due to increasing clay content with depth. In Bainsvlei soil, the soil aggregate stability was 9% and 13% lower in the topsoil and subsoil of the woody plant encroached grasslands compared to open grassland. Furthermore, the results revealed that in both soils, there was lower soil water retention and hydraulic conductivity in the topsoil and subsoil layers of woody plant encroached grassland than in open grasslands. There were no significant differences observed for soil hydraulic conductivity in the Bainsvlei and Rensburg topsoil. The subsoil hydraulic conductivity decreased by 24% in Bainsvlei and 44% in Rensburg soils in the woody plant encroached grassland. The soil water retention (SWR) decreased with an increase in woody plants. Specifically, there was 25% and 42% decrease in SWR with woody plant encroachment in the topsoil and subsoil of Bainsvlei soil, respectively. The same trend was observed in the Rensburg soils with 50% and 19% decrease in SWR in the topsoil and subsoil, respectively. Overall, the results revealed that soil type and depth influenced soil physical and hydrological properties in the studied woody plant encroached savanna grassland. As such, interventions aimed at controlling woody plant encroachment need to factor in soil type and depth in the development of management practices tailored to improve the soil hydrology of savanna grasslands

Page generated in 0.0707 seconds