• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spatial variability of hydraulic properties as affected by physical properties of selected soil types in South Africa

Maripa, Mahlodi Ramsy 20 September 2019 (has links)
MSCAGR / Department of Soil Science / Soil hydraulic and hydraulic-related physical properties are key to soil productivity and these properties are widely studied. Nevertheless, their spatial variability is least understood. Two sites were selected for this study (University of Venda Experimental farm and Roodeplaat, Agricultural Research Council farm). The objectives of this study were to determine the spatial variability of soil water content, water infiltration and hydraulic conductivity on selected soils. Field measurements were done on a 20 m × 20 m. Soil hydraulic and hydraulic-related physical properties were studied at two depths, 0 – 0.2 m top soil and 0.2 – 0.4 m sub soil. The field was irrigated to saturation and let to drain freely for two days. The soil was quickly secured in water cans to avoid further loss of water by evaporation and taken to the laboratory for analysis. Data was analysed using ordinary kriging method in ArcMap® software version 10.4 to generate spatial variability maps and semi variograms. The University of Venda Experimental farm had lesser spatial variability with coefficient of variation ranging from 9.6 to 33.4%. The spatial variability of soil was very low confirmed by contour maps depicting slightly homogeneity. Whereas, the soil hydro-physical properties displayed greater spatial variability at Roodeplaat, Agricultural Research Council Experimental farm. The empirical variograms of spherical model fits were also assuming weak spatial dependence with a curve variogram. The coefficient of variation ranged from 10.5 to 51.9%. Therefore, the greater variability at Roodeplaat, Agricultural Research Council Experimental farm indicated that coarse soil texture under conventional tillage has a greater influence on the spatial variability of the soil hydro-physical properties. / NRF
2

Soil aggregates characteristics and interrill erosion in some weakly weathered coarse textured ecotopes in Eastern Cape Province, South Africa

Nebo, Godwin Iloabuchi January 2013 (has links)
Aggregate stability and aggregate size distribution on soil surface that is impacted by rain drops affect soil erosion yet little is known about less weathered coarse textured soils. The objectives of the current study were to determine (i) the aggregate stability and associated aggregate fraction size distribution and (ii) the impact of the initial aggregate size on the aggregate stability and the resulting sediment fraction size distribution following rain drop impact in some quartz dominated coarse textured soils in the Eastern Cape Province. Soil samples for this experiment were collected from 14 ecotopes on the surface with a natural slope between 7.5 to 11% and at the depth between 0 to 0.2 m in the Eastern Cape Province. In each ecotope, twenty-five different spots were sampled using a spade at depth 0 to 0.2 m in other to eradicate biasness and ensure homogeneity. Thereafter, the soil samples were mixed to make a composite sample. The composited soil samples were then placed in rigid containers and taken to the soil science laboratory of the University of Fort Hare, Alice Campus where analyses were carried out. The soil properties were determined by passing the < 5 mm soil sample through a 2 mm sieve. The total Na, Ca and Mg contents in the soil samples were also determined using the wet digestion with sulphuric acid method. The total Soil organic matter content (SOM) was determined by the process known as weight loss on ignition. Thereafter, the fraction size distribution and aggregate stability was done by passing < 5 mm soil samples through a 3 mm sieve. The obtained calibrated aggregates between 3 and 5 mm were oven dried at 40o C. Thereafter, five gram (5g) of oven dried calibrated aggregates was immersed in a 50 mL deionized water in a 250 mL beaker for 10 minutes. The soil material left was transferred to a 0.053 mm sieve already immersed in ethanol and moved five times in the ethanol to separate < 0.053 mm from > 0.053 mm fragments. The remaining > 0.053 mm was re-immersed in ethanol and further oven dried at 40o C for 5 minutes. Thereafter, the > 0.053 mm fraction was transferred from 0.053 mm sieve, oven dried at 40o C, dry sieved using Digital Electromagnetic Shaker on a six column of sieves: 2 mm, 1 mm, 0.5 mm, 0.25 mm, 0.106 mm, and 0.053 mm. The aggregate stability was determined using the resulting size distribution in seven classes by calculating the mean weight diameter (MWD, mm). The soils were very stable, moderately stable or unstable. The presence of smectite and cultivation as opposed to pasture lowered aggregate stability. The studied soils showed three different aggregate size distributions. Unstable soils were dominated by 0.106 – 0.25 mm aggregate size and showed a positively skewed aggregate fraction size distribution. Aggregates finer than 0.106 mm were limited because of the coarse nature of the soil texture. Moderately stable soils broke down to both micro aggregates, 0.106 – 0.25 mm and macro aggregates, 2 – 5 mm giving a bimodal distribution. The aggregate size distribution in the very stable soils was dominated by the aggregate fraction size 2 – 5 mm and a negatively skewed aggregate fraction size distribution. The smaller the initial aggregate size the higher was the aggregate stability but the reverse was true for splash erosion. It was thought that the short 5 minutes duration of the rainfall might not have been enough to cause a total breakdown of the aggregates. Alternatively, ecotopes that were dominated by primary soil minerals such as quartz showed different breakdown behaviour compared to those containing secondary minerals such as kaolinite or smectite.
3

Tillage, soil texture and mineralogy effects on selected soil properties on four soil types in Limpopo Province, South Africa

Magagula, Siyabonga Isaac 21 June 2020 (has links)
MSCAGR (Soil Science) / Department of Soil Science / The effects of tillage on soil structure and associated soil properties such as soil respiration may differ in different soils. The study determined the effects of tillage, soil texture and mineralogy in selected soil properties on different soil types. Soil samples were collected from four different sites in the Limpopo province, South Africa. The soils were classified as Glenrosa with sandy loam texture, Dundee with loamy sand, Hutton with clay, and Shortlands with clay. Glenrosa and Dundee were dominated by quartz, while Hutton and Shortlands with kaolinite. Soil samples were taken from the surface 0 – 20 cm under conventional tillage and no-till land. Soil organic matter, texture, and mineralogy were determined. The soils were wetted to activate the microorganisms and incubated for 70 days at 30℃ and soil respiration was determined using alkali trap method on a weekly basis. The study was conducted in triplicates and arranged in a completely randomized design. Data was subjected to analysis of variance using general linear model procedure of Minitab version 19. Means were compared using paired t-test at (p ≤ 0.05). The Pearson correlation coefficient (r) was used to measure the strength of linear dependence between variables. There was a significant difference in soil organic matter (p≤0.000) among all studied soils. The mean values of soil organic matter were 2.19% in Hutton, 2.0% in Shortlands, 0.54% in Glenrosa, and 0.43% in Dundee. Quartz had a strong negative linear relationship (r = -0.66) with soil organic matter while kaolinite had a strong positive linear relationship (r = 0.96). Soil respiration increased in soils dominated with quartz and decreased in soils dominated with kaolinite. The soil respiration increased by 18.95 g CO2 m-2 d-1 in conventional tillage and decreased by 13.88 g CO2 m-2 d-1 in no-tillage due to increased exposure of soil organic matter under conventional. It was concluded that less intensive tillage such as no-tillage reduces soil respiration. / NRF
4

The effects of soil type and management strategy on vegetation structure and function in a semi-arid savanna, South Africa

Britz, Mari-Louise January 2004 (has links)
Thesis (MSc)--Stellenbosch University, 2004. / ENGLISH ABSTRACT: Bush encroachment in savannas leads to reduced diversity, productivity and profitability of rangelands. This holds important implications for the livestock and eco-tourism industries, as well as for subsistence ranchers in the South African semi-arid savannas, who depend on this vegetation type for economic and livelihood purposes. Soil moisture, nutrients, rue and herbivory are generally regarded as the principal factors determining vegetation structure and function within savannas. The factors and processes involved in the determination of the tree:grass ratio within savannas are, however, not clearly understood. We investigated the role of soil type and management strategy (cattle, game and communal grazing) in the determination of the presence and distribution of plant species in general, and on the presence and distribution of the encroaching tree species, Acacia mellifera, specifically. Both shortand long-term trends were investigated. The study area, the Kimberley Triangle, (Northern Cape Province, South Africa), was ideal for this kind of study because it has different management strategies practised on several soil types, and bush encroachment is a widespread phenomenon. Contrary to the belief that heavy livestock grazing is the main cause of increases in the tree:grass ratio, we found that soil type, through its effects on plant growth and on the presence and availability of soil moisture and nutrients, is more important in determining vegetation composition than management strategy. It was found that the various types of grazing management mainly influenced vegetation structure and function by affecting the competitive interactions between Ns-fixing woody species and non-Ns-fixing grasses. Of the soil factors affecting vegetation composition, soil texture was a good indicator of the physical conditions for plant growth in an area, and also of the presence and availability of soil moisture and nutrients. We found that sand and clay soils are relatively resistant to bush encroachment as compared to loamy-sand and -clay mixes. This is because woody growth is impaired in the first-mentioned habitats by soil texture, soil moisture regimes and heavy utilisation. In soils with combinations of loam, sand and clay, soil texture and moisture are not limiting to woody growth and if the repressive competitive effect of grasses on woody vegetation is removed, opportunities are created for recruitment of woody species and encroachment. Additionally, rockiness increases soil moisture infiltration. In the study area, woody species, and specifically A. mellifera, are associated with these areas. We suggest that in the study area, rocky areas are naturally encroached. This is in agreement with the patchdynamic approach to savanna vegetation dynamics. Because soil moisture is such an important factor in the determination of the tree:grass ratio in the study area, we further suggest that in above-average rainfall years, when soil moisture conditions are optimal for woody seed germination, establishment and growth, heavy grazing should be avoided, as it would provide the opportunity for encroachment. Keywords: Bush encroachment; N2-fixing species; game, cattle, communal grazing; soil texture; soil moisture; soil nutrients; Acacia mellifera; tree-grass competition. / AFRIKAANSE OPSOMMING: Bosindringing in savanna gebiede het verlaagde diversiteit, produktiwiteit en winsgewendheid van natuurlike weivelde tot gevolg. Behalwe dat dit die Suid-Afrikaanse vee- en ekotoerisme bedrywe raak, is verskeie bestaansboerderye afhanklik van die plantegroei-tipe vir oorlewing. Grondvog, grondvoedingstowwe, vuur en beweiding word algemeen aanvaar as die belangrikste faktore wat die struktuur en funksie van savannas bepaal. Daar is egter nog nie duidelikheid oor die prosesse wat betrokke is in die bepaling van die boom-gras verhouding in savannas nie. In dié studie het ons ondersoek ingestel na die invloed van grond tipe en beweidingstrategieë (beweiding deur beeste, wild, of kommunale beweiding) op die algemene verspreiding van verskillende plant spesies, en ook op die van die indringer spesie, Acacia mellifera. Beide kort- en lang-termyn patrone is ondersoek. Die studiegebied, die Kimberley Driehoek in die Noord-Kaap, Suid-Afrika, was ideaal vir so 'n ondersoek omdat verskillende beweiding strategieë op verskeie grond-tipes beoefen word maar bosindringing steeds 'n algemene verskynsel in die gebied is. Ons bevinding was dat, ten spyte van die feit dat daar oor die algemeen geglo word dat swaar beweiding die hoof oorsaak van bosindringing is, grond-tipe belangriker is in die bepaling van die spesie-samestelling van 'n gebied. Dit is as gevolg van die feit dat grond-tipe die groei van plante beïnvloed deur die teenwoordigheid en beskikbaarheid van grondvog en -nutriënte te bepaal. Die verskillende beweidingstrategieë beïnvloed meerendeels die kompetatiewe interaksies tussen N2-bindende hout-agtige spesies teenoor nie-Nj-bindende gras-agtige spesies. Grond-tekstuur was 'n goeie aanduiding van die algemene toestande vir plantegroei en ook van die teenwoordigheid en beskikbaarheid van grondvog en -nutriënte. Ons het bevind dat sand en klei grond, relatief tot leem, sand en klei kombinasies, weerstandbiedend is teen bosindringing as gevolg van die tekstuur, water-regimes en swaar beweidings vlakke wat op die grond-tipes voorkom. Omdat grond-tekstuur en grondvog nie beperkend is op die leem-, sand- en klei-grond kombinasies nie, kan bosindringing maklik hier voorkom as die onderdrukkende effek wat grasse op houtagtige plantegroei het, deur swaar beweiding verwyder word. A. mellifera is ook oor die algemeen met klipperige gebiede geassosieer omdat klipperigheid lei tot verhoogde infiltrasie van grondvog. In die studie-gebied is klipperige areas dan ook van nature ingedring deur A. mellifera. Dit stem ooreen met die siening dat savannas bestaan uit "laslappe" van verskillende plantegroei (patch-dynamic approach). Dit was duidelik dat grondvog 'n belangrike bepalende faktor is in die bepaling van die boom-gras verhouding in die studiegebied. Ons stel dus voor dat in bo-gemiddelde reënval jare, swaar beweiding vermy moet word, omdat houtagtige saailinge gedurende die tydperke maklik kan ontkiem en vestig juis omdat grondvog dan nie beperkend is nie. Sleutelwoorde: Bosindringing; N2-bindende spesies; bees, wild, kommunale beweiding; grond tekstuur; grond-vog; grond-nutriënte; Acacia mellifera; boom-gras kompetisie.

Page generated in 0.0973 seconds