• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 176
  • 133
  • 56
  • 10
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 445
  • 445
  • 153
  • 122
  • 82
  • 78
  • 67
  • 66
  • 64
  • 52
  • 48
  • 47
  • 46
  • 45
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

POROSITY, PERCOLATION THRESHOLDS, AND WATER RETENTION BEHAVIOR OF RANDOM FRACTAL POROUS MEDIA

Sukop, Michael C. 01 January 2001 (has links)
Fractals are a relatively recent development in mathematics that show promise as a foundation for models of complex systems like natural porous media. One important issue that has not been thoroughly explored is the affect of different algorithms commonly used to generate random fractal porous media on their properties and processes within them. The heterogeneous method can lead to large, uncontrolled variations in porosity. It is proposed that use of the homogeneous algorithm might lead to more reproducible applications. Computer codes that will make it easier for researchers to experiment with fractal models are provided. In Chapter 2, the application of percolation theory and fractal modeling to porous media are combined to investigate percolation in prefractal porous media. Percolation thresholds are estimated for the pore space of homogeneous random 2-dimensional prefractals as a function of the fractal scale invariance ratio b and iteration level i. Percolation in prefractals occurs through large pores connected by small pores. The thresholds increased beyond the 0.5927 porosity expected in Bernoulli (uncorrelated) networks. The thresholds increase with both b (a finite size effect) and i. The results allow the prediction of the onset of percolation in models of prefractal porous media. Only a limited range of parameters has been explored, but extrapolations allow the critical fractal dimension to be estimated for many b and i values. Extrapolation to infinite iterations suggests there may be a critical fractal dimension of the solid at which the pore space percolates. The extrapolated value is close to 1.89 -- the well-known fractal dimension of percolation clusters in 2-dimensional Bernoulli networks. The results of Chapters 1 and 2 are synthesized in an application to soil water retention in Chapter 3.
22

Design of a Multilevel - TDR Probe for Measuring Soil Water Content

Adelakun, Idris Ademuyiwa 30 November 2012 (has links)
ABSTRACT The TDR measures soil water content by measuring the travel time of an electromagnetic step pulse through a wave guide embedded in the soil. Damage during insertion and retrieval of the probe makes it unsuitable for repeated use. A multilevel-TDR probe with adequate protection for cable was designed and tested to overcome this problem. Each section of the multilevel-TDR probe was constructed by embedding a 60 mm centre rod and a 63 mm outer loop in grooves on the outer wall of a 200 mm section of PVC pipe. Fifteen such probes were tested in the laboratory and the field by comparing it with the weighing method. Regression analysis between TDR-ϴv and weighing method-ϴv showed good correlation with an R2 of 0.97 and 0.98 during two laboratory experiments and 0.51 during the field experiment. This multilevel probe is cost effective, reusable and can measure soil water content at different depths.
23

Comparison of techniques for measuring the water content of soil and other porous media

George, Brendan Hugh January 1999 (has links)
The measurement of water in soil on a potential, gravimetric or volumetric basis is considered, with studies concentrating on the measurement of water by dielectric and neutron moderation methods. The ability of the time-domain reflectometry technique to measure water content simultaneously at different spatial locations is an important advantage of the technique. The reported apparent dielectric by the TRASE� time-domain reflectometer and Pyelab time-domain reflectometry systems is sensitive to change in extension cable length. In some soil, e.g. a commercial sand, the response to increasing extension length of extension cable is linear. For other soil a linear response occurs for certain lengths of cable at different moisture contents. A single model accounting for clay content, extension cable length, time-domain reflectometry system, probe type and inherent moisture conditions explained 62.2 % of variation from the control (0 m extension) cable. The extension cable causes a decrease in the returning electromagnetic-wave energy; leading to a decline in the slope used in automatic end-point determination. Calibration for each probe installation when the soil is saturated, and at small water contents is recommended. The ability of time-domain reflectometry, frequency-domain and neutron moderation techniques in measuring soil water content in a Brown Chromosol is examined. An in situ calibration, across a limited range of water contents, for the neutron moderation method is more sensitive to changing soil water content than the factory supplied 'universal' calibration. Comparison of the EnviroSCAN� frequency-domain system and the NMM count ratio indicates the frequency-domain technique is more sensitive to change in soil water conditions. The EnviroSCAN� system is well suited to continuous profile-based measurement of soil water content. Results with the time-domain reflectometry technique were disappointing, indicating the limited applicability of time-domain reflectometry in profile based soil water content measurement in heavy-textured soil, or soil with a large electrical conductivity. The method of auguring to a known depth and placement of the time-domain reflectometry probe into undisturbed soil is not recommended. A time-domain reflectometry system is adapted for in situ measurement of water in an iron ore stockpile. The laboratory calibration for water content of the processed iron ore compares favourably to a field calibration. In the field study, the 28 m extension cable used to connect the probes to the time-domain reflectometry affected the end-point determination of the time-domain reflectometry system. To account for this, 0.197 should be subtracted from the reported apparent dielectric before calculation of volumetric moisture content.
24

Temperature Effect on the Soil Water Retention Characteristic

January 2011 (has links)
abstract: The importance of unsaturated soil behavior stems from the fact that a vast majority of infrastructures are founded on unsaturated soils. Research has recently been concentrated on unsaturated soil properties. In the evaluation of unsaturated soils, researchers agree that soil water retention characterized by the soil water characteristic curve (SWCC) is among the most important factors when assessing fluid flow, volume change and shear strength for these soils. The temperature influence on soil moisture flow is a major concern in the design of important engineering systems such as barriers in underground repositories for radioactive waste disposal, ground-source heat pump (GSHP) systems, evapotranspirative (ET) covers and pavement systems.. Accurate modeling of the temperature effect on the SWCC may lead to reduction in design costs, simpler constructability, and hence, more sustainable structures. . The study made use of two possible approaches to assess the temperature effect on the SWCC. In the first approach, soils were sorted from a large soil database into families of similar properties but located on sites with different MAAT. The SWCCs were plotted for each family of soils. Most families of soils showed a clear trend indicating the influence of temperature on the soil water retention curve at low degrees of saturation.. The second approach made use of statistical analysis. It was demonstrated that the suction increases as the MAAT decreases. The statistical analysis showed that even though the plasticity index proved to have the greatest influence on suction, the mean annual air temperature effect proved not to be negligible. In both approaches, a strong relationship between temperature, suction and soil properties was observed. Finally, a comparison of the model based on the mean annual air temperature environmental factor was compared to another model that makes use of the Thornthwaite Moisture Index (TMI) to estimate the environmental effects on the suction of unsaturated soils. Results showed that the MAAT can be a better indicator when compared to the TMI found but the results were inconclusive due to the lack of TMI data available. / Dissertation/Thesis / M.S. Civil Engineering 2011
25

Modelling the soil water balance of canola Brassica napus L (Hyola 60)

Tesfamariam, Eyob Habte 21 September 2004 (has links)
Soil Water Balance (SWB) is a generic crop growth and irrigation-scheduling model. It improves on traditional methods of irrigation scheduling using evaporative demand by mechanistically and dynamically, quantitatively considering the soil–plant-atmosphere continuum. However, it needs specific crop growth parameters, which are not readily available for canola. The objective of this study was to determine crop growth parameters specific to canola and to identify the effect of water stress at different stages of growth on seed and oil yield. The study was conducted on the experimental farm of the University of Pretoria, South Africa, under a rain shelter during 2002 and in an open field during 2003. Weather data were recorded with an automatic weather station, phenological stages monitored frequently and growth analyses carried out every two weeks. Soil water content was measured with a neutron water meter weekly during 2002 and once every five days during 2003. Fractional interception of PAR was also measured with a sunfleck ceptometer. Specific crop parameters including specific leaf area, the leaf stem partitioning parameter, maximum rooting depth and thermal time requirements for crop development were generated from field measurements. These data form the backbone for accurate mechanistic simulations of the soil-water balance. The model was successfully calibrated and evaluated, proving its potential to be used as a generic crop irrigation-scheduling tool. Highest seed and oil yield was harvested from the unstressed treatment and lowest from the treatment stressed during the flowering stage. / Dissertation (MSc (Agric))--University of Pretoria, 2005. / Plant Production and Soil Science / unrestricted
26

On the Enthalpy and Entropy of Soil Water

Kohl, Robert A. 01 May 1962 (has links)
Just twenty years have passed since the first papers were published on the application of chemical thermodynamics to the soil-water system (11, 14). Since then, soil physicists have used thermodynamics in an attempt to characterize and l earn more about this intricate system.
27

Role of dynamic flow in relationships between suction head and degree of saturation.

Mohamed, Mostafa H.A., Sharma, R.S. January 2007 (has links)
No / This paper presents results of the relationship between the degree of saturation and the matric suction head at static equilibrium and during dynamic flow of water using a Buchner funnel and a fully instrumented two-dimensional tank, respectively. The major influences of the dynamic flow on the relationships between the suction head and the degree of saturation are highlighted and discussed. The experimental results show that dynamic flow of water strongly affects the volume of entrapped air. The results also reveal that any scanning curve can be described as two parts, namely, transition and coinciding. The transition curve starts from the recent reversal degree of saturation and continues up to the previous reversal degree of saturation. The shape of the transition curve and the amount of hysteresis are not only a function of the reversal degree of saturation but are also a function of the saturation path history. The experimental results are used to examine the validity of the proposed analytical model by Parker and Lenhard in 1987 for describing the relationships between the degree of saturation and the matric suction head. It was found that Parker and Lenhard¿s model provides a good prediction of the relations provided that care should be taken for the value of the reversal degree of saturation at zero suction head.
28

Atmospheric and soil water limitations on water flux components in a temperate pine forest

McLaren, Joshua 09 1900 (has links)
<p> Sap flow measurements scaled to represent canopy transpiration (Ec) and eddy covariance measurements of total forest water vapour flux (E) were compared with soil water, meteorological measurements and modelled interception estimates to quantify the above canopy flux of water to the atmosphere from a temperate White pine ecosystem located on the Norfolk sand plain at Turkey Point, Ontario, for the growing season of 2006. Hydraulic redistribution (HR) was found to have occurred at the site on 26 days during the study (growing season of 2006). During a drought period in June, the nightly increases in stored water (up to 0.50 mm) provided by HR reduced drought intensity in the root zone by maintaining soil water contents ( 0) at levels above the water content associated with the approximate wilting point(() of 0.07). Daily forest water fluxes (E) averaged 2.4 mm d-1 and reached maximums of 4 mm d-1 regularly. Canopy transpiration (Ec) averaged 1.2 mm d-1• Modelled interception accounted for 18% of gross precipitation over the study period. Ec and interception loss (EI) contribute the majority (81%) of the water vapour exchanged between the forest and the atmosphere. E1 accounted for 34% of E and Ec accounted for 47%. Ec was controlled linearly by atmospheric demand (VPD) until a variable transition point was reached, after which mid-day Ec rates remained relatively constant. Ec rates were limited to approximately 0.10 mm hh-1 through the study period. This limitation was sensitive to early morning VPD and soil water deficit. Increases in early morning VPD caused maximum Ec rates to arrive earlier in the day and to be reduced in magnitude. This shift in the timing and magnitude of Ec rates masked a relationship between Ec and soil water content that caused Ec to be strictly limited once root zone soil water content (Bo-25cm) reduced to ~0.07. This study illustrates that the water storage capacities of different site characteristics (particularly the canopy and soil) are an important factor to consider when investigating how changing precipitation characteristics might affect the hydrology of an ecosystem, and discusses the interrelationship between transpiration, soil water supply and atmospheric demand. </p> / Thesis / Master of Science (MSc)
29

An improved dual-permeability model of solute transport in structured soils : model development and parameter identification in laboratory and field experiments /

Larsbo, Mats, January 2005 (has links) (PDF)
Diss. (sammanfattning). Uppsala : Sveriges lantbruksuniv. / Härtill 3 uppsatser.
30

The impact of bacteria on the biophysics of water retention and flow in soil

Dello Sterpaio, Patricia January 2012 (has links)
Understanding soil structure, in particular the void spaces through which water, gases and solutes flow and in which organisms exist, is vital to a sustainable future on earth. The investigation of the structural behaviour of soil under different influences is fundamental to understanding and protecting the soil. This study has investigated the impact of bacteria on the biophysics of water retention and flow, aiming to elucidate the effect of three key components produced by the model organism, Pseudomonas fluorescens SBW25. Cellulose is an extracellular polysaccharide involved in the formation of the matrix of the bacterial biofilm, lipopolysaccharide is a cell membrane component required for bacterial attachment, and viscosin is a biosurfactant released from the bacteria. Four isogenic strains mutated so as to heighten or suppress production of one of these key components were used in addition to the wild-type strain. Labfield sandy loam soil was sieved and packed into replicate experimental cores which were incubated with different bacterial treatments. Following sterilisation, the gravimetric water content (u g g-1) of the soil was determined at equilibrated matric potentials from -1 cm to -100 cm during two wet-dry cycles. Sorptivity (S, mm s-1/2) of the soil, indicative of water repellency, was determined using a mini-infiltrometer setup and has been reported as the rate of infiltration of water into the soil. Bacteria have been shown to increase water repellency of soil, decrease the total water content at saturation and increase the water retaining ability of the soil as it drains (p < 0.05). Three-dimensional analysis of core scale structure was carried out using micro X-ray computed tomography (µXCT) and of aggregate scale structure using synchrotron-µXCT. Volumetric analyses of the 3D structures has shown decreased pore connectivity and destabilisation of aggregates in soil systems treated with bacteria deficient in the production of a key extracellular component, cellulose, LPS or viscosin (p < 0.05). Analyses of cracking patterns in two types of sandy loam soil, Labfield and Bullionfield has highlighted the importance of taking into account the soil type and its composition when studying soils, as even within soil classification groups different behaviours are observed. This study has provided clear evidence of the ability of bacteria and their extracellular components to impact upon (i) the hydrodynamics of water retention and flow in soil and (ii) the structural organisation, aggregation and stabilisation of soil.

Page generated in 0.0778 seconds