Spelling suggestions: "subject:"soilstructure 1interaction"" "subject:"soilstructure 3dinteraction""
71 |
Analysis of wave motion in irregular layered media using a finite-element perturbation methodIkeda Junior, Isamu, 1969- 21 September 2012 (has links)
A technique that allows for nonparallel interfaces and lateral inhomogeneities in an irregular layered medium is described. The formulation combines a semidiscrete finite-element technique with a perturbation method, providing an approximate treatment of wave propagation in irregular layered media. The procedure treats the irregularities as perturbations with respect to a reference, horizontally-layered, laterally-homogeneous medium and produces approximations of the perturbed wave motion with little additional computation effort. Within the framework of the method, consistent transmitting boundaries and other semidiscrete hyperelements as well as Green’s functions, already available for regular layered media, can be reformulated. The method is relevant in problems of foundation dynamics, ground response to seismic waves and site characterization. Example problems are presented toward evaluation of the effectiveness of the method. / text
|
72 |
Analysis of soil-structure system response with adjustments to soil properties by perturbation methodPatta, Sang Putra Pasca Rante 07 July 2014 (has links)
The research described in this dissertation undertakes a computational study of wave motion due to ground excitation in layered soil media. Adjustments of soil properties consistent with the level of deformation is applied using an equivalent linear approach. The finite element method provides the basis of the numerical procedure for soil-structure system response calculation in conjunction with a first-order perturbation scheme. Available experimental data are employed for shear-modulus and damping adjustments. The findings of the research are expected to lead to efficient calculation of structural response to earthquake ground motion. / text
|
73 |
Effect of Soil-Structure Interaction on the Behavior of Offshore Piles Embedded in Nonlinear Porous MediaAl-Younis, Mohamad Jawad K. Essa January 2013 (has links)
Pile foundations that support offshore structures are required to resist not only static loading, but also dynamic loading from waves, wind and earthquakes. The purpose of this study is to gain a better understanding of the behavior of offshore piles under cyclic or dynamic loading using the finite element approach. To achieve this goal, an appropriate constitutive model is required to simulate the behavior of soils and interfaces. The DSC constitutive model is developed for saturated interfaces to study the behavior under severe shear deformation at the soil-pile interface. Monotonic and cyclic simple shear experiments are conducted on Ottawa sand-steel interfaces under drained and undrained conditions using the Cyclic-Multi-Degree-of-Freedom shear device with porewater pressure measurement (CYMDOF-P). The effect of various parameters such as normal stress, surface roughness of steel, type of loading, and the amplitude and frequency of the applied displacement in two-way cyclic loading are investigated. The data from the simple shear tests on saturated interfaces are used to calculate the parameters in the DSC model. The resulting parameters are then used to verify the DSC model by back predicting tests from which parameters are determined and independent tests that are not used in parameters determination. The model predictions, in general, were found to provide a highly satisfactory correlation with the observations. In the context of DSC, the concept of critical disturbance is developed to identify initiation of liquefaction in saturated Ottawa sand-steel interfaces. This method is based on using microstructural changes in material as an indication of liquefaction identification. The finite element method, along with DSC constitutive model, is used to investigate the response of offshore piles to dynamic loading. These include cyclic loading of axially loaded instrumented pile in clay and full-scale laterally loaded pile in sand. The DSC model is used to model the nonlinear behavior of saturated soils and interfaces. A nonlinear dynamic finite element program DSC-DYN2D based on the DSC modeling approach and the theory of nonlinear porous media is used for this purpose. Results from numerical solutions are compared with field measurements. Strong agreement between numerical predictions and field measurements are an indication of the ability to solve challenging soil-structure interaction problems.Based on the results of this research, it can be stated that the finite element-DSC model simulation allows realistic prediction of complex dynamic offshore pile-soil interaction problems, and is capable of characterizing behavior of saturated soils and interfaces involving liquefaction.
|
74 |
Multi-hazard Reliability Assessment of Offshore Wind TurbinesMardfekri Rastehkenari, Maryam 1981- 14 March 2013 (has links)
A probabilistic framework is developed to assess the structural reliability of offshore wind turbines. Probabilistic models are developed to predict the deformation, shear force and bending moment demands on the support structure of wind turbines. The proposed probabilistic models are developed starting from a commonly accepted deterministic model and by adding correction terms and model errors to capture respectively, the inherent bias and the uncertainty in developed models. A Bayesian approach is then used to assess the model parameters incorporating the information from virtual experiment data. The database of virtual experiments is generated using detailed three-dimensional finite element analyses of a suite of typical offshore wind turbines. The finite element analyses properly account for the nonlinear soil-structure interaction. Separate probabilistic demand models are developed for three operational/load conditions including: (1) operating under day-to-day wind and wave loading; (2) operating throughout earthquake in presence of day-to-day loads; and (3) parked under extreme wind speeds and earthquake ground motions. The proposed approach gives special attention to the treatment of both aleatory and epistemic uncertainties in predicting the demands on the support structure of wind turbines. The developed demand models are then used to assess the reliability of the support structure of wind turbines based on the proposed damage states for typical wind turbines and their corresponding performance levels. A multi-hazard fragility surface of a given wind turbine support structure as well as the seismic and wind hazards at a specific site location are incorporated into a probabilistic framework to estimate the annual probability of failure of the support structure. Finally, a framework is proposed to investigate the performance of offshore wind turbines operating under day-to-day loads based on their availability for power production. To this end, probabilistic models are proposed to predict the mean and standard deviation of drift response of the tower. The results are used in a random vibration based framework to assess the fragility as the probability of exceeding certain drift thresholds given specific levels of wind speed.
|
75 |
Nonlinear Dynamic Soil-Structure Interaction in Earthquake EngineeringNieto Ferro, Alex 17 January 2013 (has links) (PDF)
The present work addresses a computational methodology to solve dynamic problems coupling time and Laplace domain discretizations within a domain decomposition approach. In particular, the proposed methodology aims at meeting the industrial need of performing more accurate seismic risk assessments by accounting for three-dimensional dynamic soil-structure interaction (DSSI) in nonlinear analysis. Two subdomains are considered in this problem. On the one hand, the linear and unbounded domain of soil which is modelled by an impedance operator computed in the Laplace domain using a Boundary Element (BE) method; and, on the other hand, the superstructure which refers not only to the structure and its foundations but also to a region of soil that possibly exhibits nonlinear behaviour. The latter subdomain is formulated in the time domain and discretized using a Finite Element (FE) method. In this framework, the DSSI forces are expressed as a time convolution integral whose kernel is the inverse Laplace transform of the soil impedance matrix. In order to evaluate this convolution in the time domain by means of the soil impedance matrix (available in the Laplace domain), a Convolution Quadrature-based approach called the Hybrid Laplace-Time domain Approach (HLTA), is thus introduced. Its numerical stability when coupled to Newmark time integration schemes is subsequently investigated through several numerical examples of DSSI applications in linear and nonlinear analyses. The HLTA is finally tested on a more complex numerical model, closer to that of an industrial seismic application, and good results are obtained when compared to the reference solutions.
|
76 |
Application of the perfectly matched layers for seismic soil-structure interaction analysis in the time domainLee, Seung Ha January 2006 (has links)
Thesis (M.S.)--University of Hawaii at Manoa, 2006. / Includes bibliographical references (leaves 36-38). / x, 38 leaves, bound ill., map 29 cm
|
77 |
Dynamic soil-structure interaction analysis using the scaled boundary finite-element method.Bazyar Mansoor Khani, Mohammad H, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2007 (has links)
This thesis presents the development of a reliable and efficient technique for the numerical simulation of dynamic soil-structure interaction problems in anisotropic and nonhomogeneous unbounded soils of arbitrary geometry. Such a technique is indispensable in the seismic analysis of large-scale engineering constructions and, to my best knowledge, does not exist at present. The theoretical framework of the research is based on the scaled boundary finite-element method. The following advances are achieved: The scaled boundary finite-element method is extended to simulate the dynamic response of non-homogeneous unbounded domains. The scaled boundary finite element equations in the frequency and time domains are derived for power-type non-homogeneity frequently employed in geotechnical engineering. A high-frequency asymptotic expansion of the dynamic-stiffness matrix is developed. The frequency domain analysis is performed by integrating the scaled boundary finite-element equation in dynamic stiffness. In the time domain, the scaled boundary finite-element equation including convolution integrals is solved for the unit-impulse response at discrete time stations. A Pad?? series solution for the scaled boundary finite-element equation in dynamic stiffness is developed. It converges over the whole frequency range as the order of the approximation increases. The computationally expensive task of numerically integrating the scaled boundary finite-element equation is circumvented. Exploiting the sparsity of the coefficientmatrices in the scaled boundary finite-element equation leads to a significant reduction in computer time and memory requirements for solving large-scale problems. Furthermore, lumped coefficient matrices are obtained by adopting the auss-Lobatto-Legendre shape functions with nodal quadrature, which avoids the eigenvalue problem in determining the asymptotic expansion. A high-order local transmitting boundary constructed from a continued-fraction solution of the dynamic-stiffness matrix is developed. An equation of motion as occurring in standard structural dynamics with symmetric and frequency-independent coefficient matrices is obtained. This transmitting boundary condition can be coupled seamlessly with standard finite elements. Transient responses are evaluated by using a standard timeintegration scheme. The expensive task of evaluating convolution integrals is circumvented. The advances developed in this thesis are applicable in other disciplines of engineering and science to the analysis of scalar and vector waves in unbounded media.
|
78 |
Buckling of suction caissons during installationPinna, Rodney January 2003 (has links)
Suction caissons are a foundation system for offshore structures which offer a number of advantages over traditional piled foundations. In particular, due to the method of installation used, they are well suited for deep-water applications. The suction caisson consists of an open ended cylindrical shell, which is installed below the seabed in a sequence which consists of two loading phases. The caisson is first installed part way under self weight, with the installation being completed by lowering the pressure within the cylinder and thus allowing the ambient water pressure to force the caisson into the ground. This thesis examines a number of structural issues which result from the form of the caisson — essentially a thin walled cylinder — and the interaction of the caisson with the surrounding soil during installation. To do this, variational analysis and nonlinear finite element analysis are employed to examine the buckling and collapse behaviour of these cylinders. In particular, two issues are considered; the influence of the open end, and the interaction between the cylinder and soil on the buckling and collapse loads. First, the behaviour of open ended cylinders is considered, where the boundary condition at the open end is allowed to vary continuously from completely free to pinned, by the use of a variable lateral spring. This lateral spring restraint may be considered to represent the intermediate restraint provided by a ring stiffener which is not fully effective. The effect of various combinations of boundary conditions is accounted for by the use of a multiplier on the lower bound to the buckling load of a cylinder with classical supports. The variable spring at the open end may also be considered to be an initial, simple representation of the effect of soil restraint on the buckling load. More complex representations of the soil restraint are also considered. A nondimensional factor is proposed to account for the influence of this spring on the buckling load. One combination of boundary conditions, where the upper end of the caisson is pinned, and the lower end free (referred to as a PF boundary condition), is found to have buckling and collapse behaviour which is unusual for cylindrical shells. Buckling loads for such shells are much lower than would be found for cylinders with more typical boundary conditions, and of similar dimensions. More unusually however, PF cylinders are shown to have positive postbuckling strength. The behaviour is found to be a result of the large flexibility which results from the low restraint provided by the PF boundary conditions. This is shown by continuously decreasing the flexibility of the cylinder, by increasing the axial restraint at the pinned end. It is shown that this results in a large increase in buckling load, and a return to more usual levels of imperfection sensitivity. In particular, with an intermediate level of axial restraint, buckling loads and imperfection sensitivity are intermediate between those of PF shells with no, and with full, axial restraint. Overall however, collapse loads for PF cylinders with no additional restraint are well below those of cylinders with stiffer boundary conditions, for equal geometries. Eigenvalue buckling of cylinders fully and partially embedded in an elastic material are examined, and two analytical solutions are proposed. One of these is an extension of a method previously proposed by Seide (1962), for core filled cylinders, to pin ended cylinders which have support from both a core and a surrounding material. The second method represents the elastic support as a two parameter foundation. While more approximate than the first method, this method allows for the examination of a wider range of boundary conditions, and of partial embedment. It is found that the buckling load of the shell/soil system decreases as the embedment ratio decreases. Collapse of fully and partially embedded cylinders is also examined, using nonlinear finite element analysis. The influence of plasticity in the soil is also considered. For cylinders with small imperfections, it is found that the collapse load shows a large increase over that of the same cylinder with no soil support. However, as the size of initial geometric imperfections increases, it is found that the collapse load rapidly approaches that of the unsupported cylinder. In particular, in weak soils the gain in strength over the unsupported shell may be minimal. The exception to this is again PF cylinders. As these have relatively low collapse loads, even very weak soils are able to offer an increase in collapse load over the unsupported case. Finally, a summary of these results is provided in the form of guidance for design of such structures.
|
79 |
Seismic performance of a pile-supported container wharf structures in rockfill /Kawamata, Yohsuke. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2009. / Printout. Includes bibliographical references (leaves 306-310). Also available on the World Wide Web.
|
80 |
Lubrication mechanisms and their influence on interface strength during installation of subsurface pipesMcGillivray, Catherine Black. January 2009 (has links)
Thesis (Ph.D)--Geosystems, Georgia Institute of Technology, 2010. / Committee Chair: Frost, J. David; Committee Member: Burns, Susan E.; Committee Member: Gokhale, Arun; Committee Member: Mayne, Paul W.; Committee Member: Rix, Glenn J. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
Page generated in 0.1349 seconds