• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 72
  • 21
  • 10
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 256
  • 256
  • 256
  • 76
  • 76
  • 74
  • 67
  • 60
  • 57
  • 52
  • 44
  • 39
  • 37
  • 36
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Soil structure interaction for shrink-swell soils a new design procedure for foundation slabs on shrink-swell soils

Abdelmalak, Remon Melek 15 May 2009 (has links)
Problems associated with shrink-swell soils are well known geotechnical problems that have been studied and researched by many geotechnical researchers for many decades. Potentially shrink-swell soils can be found almost anywhere in the world especially in the semi-arid regions of the tropical and temperate climate. Foundation slabs on grade on shrink-swell soils are one of the most efficient and inexpensive solutions for this kind of problematic soil. It is commonly used in residential foundations or any light weight structure on shrink-swell soils. Many design methods have been established for this specific problem such as Building Research Advisory Board (BRAB), Wire Reinforcement Institute (WRI), Post- Tensioning Institute (PTI), and Australian Standards (AS 2870) design methods. This research investigates most of these methods, and then, proposes a moisture diffusion soil volume change model, a soil-weather interaction model, and a soil-structure interaction model. The proposed moisture diffusion soil volume change model starts with proposing a new laboratory test to determine the coefficient of unsaturated diffusivity for intact soils. Then, it introduces the development of a cracked soil diffusion factor, provides a chart for it, and explains a large scale laboratory test that verifies the proposed moisture diffusion soil volume change model. The proposed soil-weather interaction model uses the FAO 56-PM method to simulate a weightless cover performance for six cities in the US that suffer significantly from shallow foundation problems on shrink-swell soils due to seasonal weather variations. These simulations provide more accurate weather site-specific parameters such as the range of surface suction variations. The proposed weather-site specific parameters will be input parameters to the soil structure models. The proposed soil-structure interaction model uses Mitchell (1979) equations for moisture diffusion under covered soil to develop a new closed form solution for the soil mound shape under the foundation slab. Then, it presents a parametric study by carrying out several 2D finite elements plane strain simulations for plates resting on a semiinfinite elastic continuum and resting on different soil mounds. The parametric study outcomes are then presented in design charts that end with a new design procedure for foundation slabs on shrink-swell soils. Finally, based on the developed weather-soil-structure interaction models, this research details two procedures of a proposed new design method for foundation slabs on grade on shrink-swell soils: a suction based design procedure and a water content based design procedure.
32

Clay mineralogy effects on long-term performance of chemically treated expansive clays

Chittoori, Bhaskar Chandra Srinivas. January 2008 (has links)
Thesis (Ph.D.) -- University of Texas at Arlington, 2008.
33

Elastic solution for rectangular and circular plates on non-homogeneous soil foundation /

Man, Kwok-fai. January 1988 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1988.
34

Elastic solution for rectangular and circular plates on non-homogeneous soil foundation

文國輝, Man, Kwok-fai. January 1988 (has links)
published_or_final_version / Civil Engineering / Master / Master of Philosophy
35

Incorporating Time Domain Representation of Impedance Functions into Nonlinear Hybrid Modelling

Duarte Laudon, Alexander 22 November 2013 (has links)
A number of methods have been proposed that utilize the time domain transformations of the frequency dependent impedance functions to perform time-history analysis of structures accounting for soil-structure interaction (SSI). Though these methods have been available in literature for a number of years, this study is the first to rigorously examine the limitations and advantages of these methods in comparison to one another. These methods contain certain stability issues that required investigating which lead to the formation of an analysis procedure that assesses a transform method’s stability. The general applicability of these methods was demonstrated by utilizing them to model increasingly sophisticated reference problems. Additionally the suitability of these methods to being incorporated into hybrid simulations of nonlinear inelastic structures considering soil-structure interaction was confirmed. The modelling of a nonlinear structure considering soil-structure interaction is an improvement over the most common modelling strategies that model solely linear-elastic behaviour.
36

Soil-structure Interaction Associated with Buried PVC Sewers with Vertical Risers

Ye, JIANFEI 05 January 2009 (has links)
The design of service connections to deeply buried sewers involves a number of challenges. In practice, the loads that develop from vertical risers can damage the Tee or Wye fitting to which it is connected. This thesis studies the expected loads and resistance of these connections, and provides some recommendations for the solution of this engineering problem. Laboratory tests have been performed to explore the capacities of the existing fittings both in air and when buried in uniform sand. A test procedure different from the standard quality control test methods described in ASTM F1336-02 is used to study the performance of the fittings in air. A special test configuration was also developed for an existing pipe test cell to explore the capacities of the existing PVC Tee and Wye fittings when buried in uniform sand. An analytical formula analogous to pile downdrag and numerical analyses have been used to evaluate the test results, to calculate the capacities of the buried heavy-wall fittings, and to explore the downdrag forces that develop along vertical risers. Through comparisons with experimental measurements, it was demonstrated that these methods of analysis can be used to estimate the downdrag forces and determine the adequacy of specific fittings to resist those forces. The major conclusions drawn for the specific fittings tested in this project are summarized as follows. When axially loaded in air, both Tee and Wye fittings experience plastic yield failure. When buried, the Tee fitting fractures or yields only along the base of the riser part; while the Wye fitting itself does not fail, the riser cracks near its base where it connects to the curved pipe (450 elbow) above the Wye. Both the capacities and stiffness of the buried fitting system (either Tee or Wye) are approximately linear functions of the confining stress supplied by the surrounding soil. The accumulated downdrag along the riser in the coarse-grained soil is much smaller than that in fine-grained soil. Various practical solutions for the vertical riser problem are then discussed and recommended. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2008-12-28 21:18:30.363
37

Incorporating Time Domain Representation of Impedance Functions into Nonlinear Hybrid Modelling

Duarte Laudon, Alexander 22 November 2013 (has links)
A number of methods have been proposed that utilize the time domain transformations of the frequency dependent impedance functions to perform time-history analysis of structures accounting for soil-structure interaction (SSI). Though these methods have been available in literature for a number of years, this study is the first to rigorously examine the limitations and advantages of these methods in comparison to one another. These methods contain certain stability issues that required investigating which lead to the formation of an analysis procedure that assesses a transform method’s stability. The general applicability of these methods was demonstrated by utilizing them to model increasingly sophisticated reference problems. Additionally the suitability of these methods to being incorporated into hybrid simulations of nonlinear inelastic structures considering soil-structure interaction was confirmed. The modelling of a nonlinear structure considering soil-structure interaction is an improvement over the most common modelling strategies that model solely linear-elastic behaviour.
38

Behavior of geosynthetic reinforced soil walls with poor quality backfills on yielding foundations /

Saidin, Fadzilah. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 280-294).
39

Numerical analysis of shallow circular foundations on sands /

Yamamoto, Nobutaka. January 2006 (has links)
Thesis (Ph.D.)--University of Western Australia, 2006.
40

Development and assessment of transparent soil and particle image velocimetry in dynamic soil-structure interaction

Zhao, Honghua, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Missouri--Rolla, 2007. / "UTC R155." Title from PDF title screen. Includes bibliographical references (p. 130-135). Also available online.

Page generated in 0.1457 seconds