• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 9
  • 9
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pathosystem development, characterisation and genetic dissection of the soil pathogen Phytophthora medicaginis and the model legume Medicago truncatula : a view to application of disease resistance in susceptible legume species

nolad@iprimus.com.au, Nola Kim D'Souza January 2009 (has links)
Phytophthora medicaginis is an important soil-borne oomycete pathogen of lucerne (Medicago sativa) and chickpea (Cicer arietinum) within Australia and overseas. To understand the host/pathogen interaction, a pathosystem was developed using the model legume Medicago truncatula. Using the resources developed for genetics and molecular characterisation in this model plant, the aim of this research was to understand the interaction between M. truncatula and P. medicaginis, with a view to improving resistance to this important pathogen in related legumes. To observe and characterise the interaction between M. truncatula and P. medicaginis, a pathosystem was developed by first screening a germplasm collection of 99 M. truncatula accessions. This revealed a continuous distribution in disease phenotypes with variable extremes in natural resistance to P. medicaginis culture UQ5750, isolated originally from M. sativa. P. medicaginis zoospore inoculation of 1-2 week-old seedlings in glasshouse experiments proved to be a robust and repeatable method to consistently confirm the responses observed for six key M. truncatula accessions; SA8618 and SA8623 exhibit high natural resistance to this pathogen, accession A17 is moderately resistant, A20 is moderately susceptible and accessions Borung and SA30199 are susceptible. To characterise the genetic basis of resistance to P. medicaginis, two reciprocal F2 populations from cross pollinations between A17 and Borung and SA8618 and SA30199 were produced and then phenotyped for disease symptoms. Genetic segregation patterns indicated the involvement of a gene with a major effect in both reciprocal populations. In particular, a 3:1 segregation ratio for resistance in the F2 populations from cross pollinations between A17 and Borung indicated the possibility of a single dominant gene for moderate resistance. Further phenotyping of F3 families is required to verify this. A M. truncatula linkage map was constructed using 50 F2 individuals of the A17 X Borung population and 49 F2 individuals from the Borung X A17 population. The map, covering 519.3 cM, is comprised of 84 SSR markers with an average distance between markers of 8.7 cM. These are evenly spaced over 7 linkage groups, including a super linkage group conferred by a translocation event between LG4 and LG8 of accession A17. Quantitative trait locus (QTL) analysis confirmed there was a QTL with a major effect in the A17/Borung reciprocal populations. A significant QTL was determined by quantifying two symptoms of P. medicaginis infection - proportion of dead/chlorotic leaves and root fresh weight. The trait loci for both symptoms were located on the same linkage group within the same region, supporting the putative position of the QTL and the authenticity of its involvement in resistance to P. medicaginis. This QTL was located on LG6 and accounted for 69.5% of the observed variation in proportion of dead/chlorotic leaves or 38.1% of the variation in root fresh weight within the inoculated populations. The effect of this QTL on resistance to P. medicaginis translated into 27.5% less dead/chlorotic leaves or 0.86 g more root fresh weight. Other QTLs with minor effects that are potentially involved in the interaction are located elsewhere on LG6 and LG2. However, the marker density of the linkage map and the population size need to be increased to verify this. In parallel to this, an F7 recombinant inbred line (RIL) population of chickpea (BG212 X Jimbour), developed by breeders at the New South Wales Department of Primary Industries (NSW DPI), was also assessed for the genetic basis of resistance to P. medicaginis. Variance component analysis of phenotype scores for this intraspecific RIL population indicated that 57.15% of the differences in between-family and withinfamily variance could be attributed to a genetic component. However, gene-based markers developed in M. truncatula and established simple sequence repeat (SSR) markers of chickpea were not sufficiently polymorphic in size to produce a linkage map for further QTL analysis. An interspecific cross between C. arietinum and C. echinospermum (Howzat X ILWC246) was also performed by breeders at the NSW DPI to develop RILs. In the duration of this research these interspecific RILs were bred to generation F3 and phenotyping assessment had not been performed. However, marker screening of the parents revealed 122 size polymorphic chickpea SSR markers. A sufficient linkage map could be produced for QTL analysis once field assessment of this population is performed. Initial screening of the M. truncatula gene-based markers on the parents of this interspecific cross also revealed that 50% show a sequence-identified base pair difference. A chickpea linkage map incorporating these markers could be comparatively mapped with M. truncatula. Molecular investigations of the M. truncatula/P. medicaginis pathosystem were performed to elucidate the possible underlying defence mechanisms involved in the observed resistance. To determine the function of ethylene in the resistant response, the characterisation of defence associated mutants of M. truncatula and Agrobacterium rhizogenes-mediated ‘hairy root’ transformations were employed. Comparison of response to inoculation of an ethylene insensitive mutant of M. truncatula (sickle) with the moderately resistant background genotype A17 showed that sickle was hypersensitive to P. medicaginis. This indicated that ethylene insensitivity was not the source of resistance to this pathogen and importantly that ethylene is a key defence signalling molecule in the moderate resistance of A17 to P. medicaginis. Agrobacterium-mediated ‘hairy root’ transformations of M. truncatula with 4GCC::Luc constructs, revealed that the production of ethylene and consequently ethylene response factors (ERFs) after inoculation by P. medicaginis was a general defence reaction by all accessions. The two susceptible M. truncatula accessions exhibited a much stronger and earlier response to inoculation than the highly resistant and moderately resistant accessions. This indicated that the resistant response may be directed by a transcriptional component governed by the host genotype, downstream of ethylene production. The M. truncatula/P. medicaginis ‘hairy root’ transformation assay has scope to be a powerful functional genomics tool for this pathogen interaction. Reverse transcriptase quantitative polymerase chain reaction (RTqPCR) was employed to determine the general patterns of gene expression and function underlying the response to P. medicaginis infection. Relative changes in gene expression of key enzymes in each of the salicylic acid, jasmonic acid, ethylene and isoflavonoid defence pathways and in genes encoding downstream target proteins revealed potential genes involved in the resistance to P. medicaginis. There was a distinct molecular difference in the response between the high and moderately resistant M. truncatula phenotypes to this pathogen. Moderate resistance to P. medicaginis in M. truncatula is possibly mediated by ethylene and involves the considerable induction of pathogenesis related protein 5 (PR5), which was not the same defence response that conferred the high resistance to P. medicaginis. Early and consistent expression of genes encoding key enzymes of the isoflavonoid pathway by the highly resistant accession indicated that phytoalexin response could be associated with the high resistance. Confirmation of the involvement of isoflavonoid phytoalexins in the high resistance response to P. medicaginis merits further investigation.
2

Evaluation of three fungicides for control of soilborne diseases of lettuce seedlings

Kalonji Kabengele Muzela, J B 18 November 2008 (has links)
Lettuce (Lactuca sativa L.) seedlings diseases caused by soilborne pathogens are characterised by root rot, stem rot and damping-off of the seedlings that can occur at any time during growth. Fusarium solani, Pythium ultimum and Rhizoctonia solani are known to be the important destructive pathogens of lettuce, causing severe yield losses in South Africa. The aim of this research was to evaluate the effects of three selected fungicides to control these pathogens on lettuce seedlings. In this study the fungicides metalaxyl (Apron®), fludioxonil (Celest®) and mefenoxam (Subdue®) were applied at two concentrations as single and double doses on lettuce seedlings to determine their efficacy to control the pathogens Fusarium solani, Pythium ultimum and Rhizoctonia solani after significant reduction of mycelia growth was observed in vitro. Cultures of P. ultimum (UPGH024), R. solani (UPGH122) and F. solani (UPGH122) were obtained from the culture collection of the Department of Microbiology and Plant Pathology, University of Pretoria and cultivated on PDA for 2 days at 25ºC. Pasteurised soil was artificially inoculated with these pathogens. For the first experiment lettuce seeds were planted in polystyrene seedling trays at a depth of 1.0 cm. There were four replications of 50 seeds per treatment. In Experiment 2 pots (12 cm x 7 cm) were filled with pasteurised growing medium and 3-week old seedlings were transplanted. There were three replications of six pots containing three plants each. Seedling trays and pots were drenched with fungicides and placed in a randomised block design in a controlled environment room at 20- 26°C with a 12h-light/dark regime. The seedling trays and pots were rotated daily in the room. Seedling trays and pots were watered daily to maintain field capacity. The seedlings were able to grow larger in the pots than in seedling trays. It was confirmed that the treatment with fludioxonil (Celest®) at double and single dose inhibited the growth of the three fungi F. solani, P. ultimum and R. solani on lettuce seedlings without causing phytotoxicity. All three fungicides significantly reduced the diseases caused by the three pathogens. These findings are consistent with previous reports that fludioxonil, metalaxyl and mefenoxam can control oomycete fungi. There are few registered fungicides for the control of Fusarium solani, Pythium ultimum and Rhizoctonia solani on lettuce, therefore further work will aim to confirm these results in the field. / Dissertation (MInstAgrar)--University of Pretoria, 2008. / Microbiology and Plant Pathology / unrestricted
3

EFFECTS OF ANAEROBIC SOIL DISINFESTATION COMBINED WITH BIOLOGICAL CONTROL ON ROOT-KNOT NEMATODE AND LETTUCE DROP

Sanabria, Andres, SANABRIA January 2018 (has links)
No description available.
4

Perennial Grass Based Crop Rotations in Virginia: Effects on Soil Quality, Disease Incidence, and Cotton and Peanut Growth

Weeks, James Michael Jr. 07 November 2008 (has links)
In 2003 eight peanut and cotton crop rotations were established in southeastern Virginia, 4 of which included 2 or 3 years of tall fescue or orchardgrass grown as high-value hay crops. Each crop rotation was evaluated for changes in soil quality indicators including soil carbon and nitrogen, water stable soil aggregates, plant available water content, bulk density, cone index values, and soil moisture. Cotton and peanut growth and yield were also observed to evaluate changes in crop growth associated with differences in soil quality. Soilborne plant pathogens including root-knot nematode, stubby root nematode, ring nematode, stunt nematode, and Cylindrocladium parasiticum microsclerotia were measured in the spring and fall of each year to determine differences associated with crop rotations. Water stable soil aggregates in 2007 were higher in rotations with 3 years of either perennial grass. Soil moisture tended to be the highest at depths 30 - 60 cm in the 3-year tall fescue rotation in August and September 2007. Cotton in 2006 and peanut in 2007 had higher growth and yield where the annual crop directly followed a perennial grass. Root-knot nematode tended to decrease in all rotations over time. Stubby root nematode populations tended to increase in rotations with either duration of orchardgrass. Including perennial grasses in cotton and peanut rotations has the potential to increase growth and yield as demonstrated in this research. / Master of Science
5

The Strawberry Rhizosphere Microbiome: Role on Plant Health and Nutrition

Boyd, Eric Michael 01 June 2020 (has links) (PDF)
Microbial-root associations are important to help plants cope with abiotic and biotic stressors. Managing these interactions offers an opportunity for improving the efficiency and sustainability of agricultural production. By characterizing the bacterial and archaeal community (via 16S rRNA sequencing) associated with the bulk and rhizosphere soil of sixteen strawberry cultivars in two controlled field studies, we explored the relationships between the soil microbiome and plant resistance to two soilborne fungal pathogens of strawberry (Verticillium dahliae and Macrophomina phaseolina). Overall, the plants had a distinctive rhizosphere microbiome relative to the bulk soil, with higher abundances of known beneficial bacteria such as Pseudomonads and Rhizobium. Plant genotype, biomass, leaf nutrient content and mortality were influenced differently by the rhizosphere microbiome in each of the two trials. In the V. dahliae trial, the rhizosphere microbiome was associated with plant biomass and leaf nutrient content and only indirectly to the disease resistance. In the M. phaseolina trial, the rhizosphere microbiome was associated to plant biomass, but not nutrient content; furthermore, resistant cultivars had larger abundances of Pseudomonas and Arthrobacter in their rhizosphere relative to susceptible cultivars. The mechanisms involved in these beneficial plant-microbial interactions and their plasticity in different environments should be studied further for the design of low-input disease management strategies.
6

Evaluating Nitrogen and Carbon Differences in Standing Litter from Normal and Prematurely Senesced Bromus tectorum Plants

Jensen, Alexa Lunt 01 April 2019 (has links)
Bromus tectorum, an invasive winter annual, has displaced native vegetation throughout the western United States. Bromus tectorum litter influences nutrient cycling near the soil surface as well as plant establishment. Failed seed production of B. tectorum occasionally occurs in the field, with plants exhibiting weak flowering culms that turn straw-colored in spring when normal plants are green or purple in color. Because annual grasses transport most soluble carbon (C) and nitrogen (N) to reproductive organs, seed production failure results in significantly different fates for these nutrients compared with normal plants. As part of larger efforts to understand events leading to large-scale seedling emergence failure (termed die-offs), occasionally observed in near mono-cultures of B. tectorum, we here test the hypothesis that prematurely senesced litter associated with seed production failure has higher soluble C and N than normal litter. C and N concentrations of aboveground biomass were compared for normal and prematurely senesced B. tectorum plants. Two methods were used to cause premature senescence: fungal pathogen infection with Clarireedia capillus-albis and glyphosate herbicide application. In a related experiment, field sampling of normal and prematurely senesced plants under natural conditions was conducted to compare C and N levels in-situ. Herbicide-induced senescence resulted in 1.5 to 2 times greater soluble C concentrations, but fungal infection had no effect on soluble C under experiment conditions. Prematurely senesced litter had increased total N concentrations, resulting in lower C:N ratios. The C:N ratio for prematurely senesced plants (averaged across all studies) was 68:1, whereas mature normal plants averaged 243:1. These findings illustrate failed seed production associated with premature senescence results in B. tectorum litter with significantly higher N concentrations and can result in increased soluble C concentrations. Altered nutrient status may contribute to changes in soil microbial activity, including activity of soilborne pathogens found in die-offs.
7

Patterns and processes of exotic plant invasions in Riding Mountain National Park, Manitoba, Canada

Otfinowski, Rafael 10 September 2008 (has links)
Invasive exotic species threaten the biodiversity and function of native ecosystems. Existing models, attempting to predict and control successful invaders, often emphasize isolated stages of in their life history and fail to formalize interactions between exotic species and recipient environments. In order to elucidate key mechanisms in the success of select invaders, I investigated the role of dispersal, establishment, proliferation, and persistence in their threat to natural areas. Focusing on Riding Mountain National Park, Manitoba, Canada, I integrated the native climatic range and biological traits of 251 exotic vascular plants reported inside and outside the park. Based on their climatic range in Europe, 155 among 174 exotic plant species absent from the Park were predicted to establish within its boundaries; among these, 40 clonal perennials were considered the highest threat to the Park’s biodiversity. Focusing on smooth brome (Bromus inermis Leyss.), a Eurasian perennial, threatening the structure and function of native prairies throughout the Great Plains, I extended my research to investigate the role of dispersal, establishment, proliferation, and persistence in characterizing its threat to the endemic diversity of northern fescue prairies, protected within Riding Mountain National Park. Patterns of smooth brome invasions were contingent on the type of propagules dispersed. The shallow dispersal gradient of individual florets combined with the steeper gradient of panicles and spikelets suggested that smooth brome is capable of simultaneously invading along dense fronts as well as by establishing isolated foci. While low correlations between the number of dispersed seeds and their recruitment suggested post-dispersal transport, seedling establishment remained contingent on prairie diversity. Seedling biomass increased with declining plant diversity, however, its impact depended on the availability of soil nitrogen. As a result, disturbed areas, preserving the root function of native plants, resisted smooth brome establishment. Even though low nitrogen contributed to a decline in seedling biomass, physiological integration between ramets facilitated their vegetative proliferation in low resource environments. Despite its rapid establishment and proliferation, smooth brome productivity declined at the center of invading clones. Although field and greenhouse observations failed to implicate soilborne pathogens, reasons for the observed decline remain unresolved. My research demonstrates that while Riding Mountain National Park and other natural areas in western Canada will continue to be impacted by exotic plants, integrating key stages in their life history provides an important conceptual framework in predicting their threat to natural areas and prioritizing management. / October 2008
8

Patterns and processes of exotic plant invasions in Riding Mountain National Park, Manitoba, Canada

Otfinowski, Rafael 10 September 2008 (has links)
Invasive exotic species threaten the biodiversity and function of native ecosystems. Existing models, attempting to predict and control successful invaders, often emphasize isolated stages of in their life history and fail to formalize interactions between exotic species and recipient environments. In order to elucidate key mechanisms in the success of select invaders, I investigated the role of dispersal, establishment, proliferation, and persistence in their threat to natural areas. Focusing on Riding Mountain National Park, Manitoba, Canada, I integrated the native climatic range and biological traits of 251 exotic vascular plants reported inside and outside the park. Based on their climatic range in Europe, 155 among 174 exotic plant species absent from the Park were predicted to establish within its boundaries; among these, 40 clonal perennials were considered the highest threat to the Park’s biodiversity. Focusing on smooth brome (Bromus inermis Leyss.), a Eurasian perennial, threatening the structure and function of native prairies throughout the Great Plains, I extended my research to investigate the role of dispersal, establishment, proliferation, and persistence in characterizing its threat to the endemic diversity of northern fescue prairies, protected within Riding Mountain National Park. Patterns of smooth brome invasions were contingent on the type of propagules dispersed. The shallow dispersal gradient of individual florets combined with the steeper gradient of panicles and spikelets suggested that smooth brome is capable of simultaneously invading along dense fronts as well as by establishing isolated foci. While low correlations between the number of dispersed seeds and their recruitment suggested post-dispersal transport, seedling establishment remained contingent on prairie diversity. Seedling biomass increased with declining plant diversity, however, its impact depended on the availability of soil nitrogen. As a result, disturbed areas, preserving the root function of native plants, resisted smooth brome establishment. Even though low nitrogen contributed to a decline in seedling biomass, physiological integration between ramets facilitated their vegetative proliferation in low resource environments. Despite its rapid establishment and proliferation, smooth brome productivity declined at the center of invading clones. Although field and greenhouse observations failed to implicate soilborne pathogens, reasons for the observed decline remain unresolved. My research demonstrates that while Riding Mountain National Park and other natural areas in western Canada will continue to be impacted by exotic plants, integrating key stages in their life history provides an important conceptual framework in predicting their threat to natural areas and prioritizing management.
9

Patterns and processes of exotic plant invasions in Riding Mountain National Park, Manitoba, Canada

Otfinowski, Rafael 10 September 2008 (has links)
Invasive exotic species threaten the biodiversity and function of native ecosystems. Existing models, attempting to predict and control successful invaders, often emphasize isolated stages of in their life history and fail to formalize interactions between exotic species and recipient environments. In order to elucidate key mechanisms in the success of select invaders, I investigated the role of dispersal, establishment, proliferation, and persistence in their threat to natural areas. Focusing on Riding Mountain National Park, Manitoba, Canada, I integrated the native climatic range and biological traits of 251 exotic vascular plants reported inside and outside the park. Based on their climatic range in Europe, 155 among 174 exotic plant species absent from the Park were predicted to establish within its boundaries; among these, 40 clonal perennials were considered the highest threat to the Park’s biodiversity. Focusing on smooth brome (Bromus inermis Leyss.), a Eurasian perennial, threatening the structure and function of native prairies throughout the Great Plains, I extended my research to investigate the role of dispersal, establishment, proliferation, and persistence in characterizing its threat to the endemic diversity of northern fescue prairies, protected within Riding Mountain National Park. Patterns of smooth brome invasions were contingent on the type of propagules dispersed. The shallow dispersal gradient of individual florets combined with the steeper gradient of panicles and spikelets suggested that smooth brome is capable of simultaneously invading along dense fronts as well as by establishing isolated foci. While low correlations between the number of dispersed seeds and their recruitment suggested post-dispersal transport, seedling establishment remained contingent on prairie diversity. Seedling biomass increased with declining plant diversity, however, its impact depended on the availability of soil nitrogen. As a result, disturbed areas, preserving the root function of native plants, resisted smooth brome establishment. Even though low nitrogen contributed to a decline in seedling biomass, physiological integration between ramets facilitated their vegetative proliferation in low resource environments. Despite its rapid establishment and proliferation, smooth brome productivity declined at the center of invading clones. Although field and greenhouse observations failed to implicate soilborne pathogens, reasons for the observed decline remain unresolved. My research demonstrates that while Riding Mountain National Park and other natural areas in western Canada will continue to be impacted by exotic plants, integrating key stages in their life history provides an important conceptual framework in predicting their threat to natural areas and prioritizing management.

Page generated in 0.0609 seconds