• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 3
  • Tagged with
  • 21
  • 21
  • 21
  • 10
  • 10
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inorganic nitrogen and soil biological dynamics in cover crop systems

Kauffman, Susan Muna 04 March 1994 (has links)
Graduation date: 1994
2

Effect of different nitrogen sources, fertilizar rates, and application times on corn (Zea mays L.) yields and residual soil nitrate

Atmodjo, Slamet January 1993 (has links)
Nitrogen fertilizer use suffers from low efficiencies and increased residual NO$ sb3$ in the soil. The purpose of this study was to compare N fertilizer efficiency by a comparison of three N sources, three rates of N fertilization, and three application times of N fertilizer. Grain corn yields increased with increases in N rates, and split applications of N were superior to preplant incorporated (PPI) fertilizer. Grain N uptake was associated to grain yield and N uptake. Stover yields increased with increased N and varied with application times of N, but the effects were not as pronounced as with grain yields. Soil NO$ sb3$ generally increased with increases of added N but not with split application of N compared to PPI N. Soil NO$ sb3$ in the spring in control plots was related to grain yield response to added N but not to stover yield response.
3

Effect of different nitrogen sources, fertilizar rates, and application times on corn (Zea mays L.) yields and residual soil nitrate

Atmodjo, Slamet January 1993 (has links)
No description available.
4

Nitrate leaching from a subsurface-drained corn field under different tillage and residue levels

Burgess, Magdalena S. E. January 1994 (has links)
No description available.
5

Effects of tillage and corn residues on nitrate-nitrogen and water movement through soil

Serem, Vincent Kipyego Arap January 1995 (has links)
Laboratory soil columns, 0.3 m diameter $ times$ 0.7 m long, and two computer simulation models, LEACHM-N and NTRM, were used to investigate nitrate-nitrogen ($ rm NO sb{3 sp{-}}$-N) leaching in a sandy loam soil. The following treatments were studied: no-till (NT), reduced tillage (RT), and conventional tillage (CT) practices, with residue (R) and without residue (NR). Nitrogen fertilizer was applied at a rate of 180 kg/ha in granular form (experiment I), and in solution form a year later (experiment II). In both experiments, water was applied 5 times over 3 to 4 weeks duration, with each application lasting for 30 minutes. Each column received an average of 24 mm water in experiment I and 32 mm in experiment II. Soil moisture contents were measured and water for $ rm NO sb{3 sp{-}}$-N concentration determination sampled at 0.1, 0.2, 0.4, and 0.6 m depths, following each water application. / In each experiment I, higher nitrate-nitrogen concentrations ($ lbrack rm NO sb{3 sp{-}}$-N)), occurred at the 0.1 and 0.2 m soil layers in RT and CT treatments initially, but less leached to lower layers, while more $ rm NO sb{3 sp{-}}$-N leached to lower depths (below 0.4 m) in the NT treatment. In experiment II, more $ rm NO sb{3 sp{-}}$-N leached below 0.4 m in RT and CT than in NT treatments. Conventional tillage exhibited the lowest drainage rates. Tillage and residue effects were significant only at early stages (4 hours or before) at some depths of experiment I ($P<0.05$). Maximum $ lbrack rm NO sb{3 sp{-}}$-N) occurred at 0.4 m depth in all treatments. / LEACHM-N estimated more $ rm NO sb{3 sp{-}}$-N leaching below 0.4 m in RT and CT treatments than in NT treatment. The model performed poorly only immediately after fertilizer application, showing up to 50% deviation from observed data. Although LEACHM-N overpredicted $ lbrack rm NO sb{3 sp{-}}$-N) in the 0.2 m soil layers in all treatments, estimations remained within standard deviations of observed data. NTRM performed well below 0.4 m depths, but often underpredicted $ rm NO sb{3 sp{-}}$-N leaching at shallower depths. / From both the laboratory experiments and mathematical simulations it was concluded that when fertilizer is applied in granular form, no till practice is undesirable because deeper $ rm NO sb{3 sp{-}}$-N leaching (below 0.4 m) occurs. Reduced tillage may be the preferred choice in such a situation. When fertilizer is applied in solution, reduced and conventional tillage practices are undesirable because deeper $ rm NO sb{3 sp{-}}$-N leaching occurred. No till practice may be a better choice in such a case.
6

Nitrate leaching from a subsurface-drained corn field under different tillage and residue levels

Burgess, Magdalena S. E. January 1994 (has links)
Nitrate leaching was studied on a 2.4-ha subsurface-drained corn (Zea mays L.) field in southwestern Quebec. The soil was a sandy loam to loamy sand (mean depth 46 cm) overlying clay. Treatments, begun in fall 1991, consisted of no-till, reduced tillage, and conventional tillage with crop residues either removed or retained at harvest. Drain flow volume and NO$ sb3 sp-$-N concentrations in flow were monitored year-round, and soil NO$ sb3 sp-$-N levels measured in spring and fall. A total of 34 kg NO$ sb3 sp-$-N ha$ sp{-1}$ was recorded in drain flow in 1992 from the site as a whole, equivalent to 20% of applied fertilizer N. In the first 14 months of monitoring, over 70% of water samples had NO$ sb3 sp-$-N levels exceeding Canadian drinking water guidelines (10 mg NO$ sb3 sp-$-N L$ sp{-1}),$ and about 25% had over 40 mg NO$ sb3 sp-$-N L$ sp{-1}.$ Flow-weighted mean concentration for the site as a whole in 1992 was 19 mg NO$ sb3 sp-$-N L$ sp{-1}.$ Unanticipated variations in drain depth significantly affected flow volume and total NO$ sb3 sp-$-N losses, hampering assessment of treatment effects on drain water parameters. In 1992, post-harvest soil NO$ sb3 sp-$-N levels at 0-25 cm were significantly lower in plots with crop residues retained, regardless of tillage system, than in plots with residues removed. In May 1993 (pre-tillage), soil NO$ sb3 sp-$-N levels were similar for all treatments, having dropped in no-residue plots and risen slightly in plots with residues, suggesting immobilization of NO$ sb3 sp-$-N by crop residues in summer-fall and mineralization in spring. The NO$ sb3 sp-$-N measured in drain flow represents a substantial loss of N from the farm system, and has negative implications for water quality. Within the time-frame of the study, crop residues appeared to have a greater effect on soil NO$ sb3 sp-$-N levels, and thus leaching potential, than did tillage system.
7

Soil nitrate-N and plant nitrogen distributions under different tillage practices

Mehdi, Bano B. January 1998 (has links)
A two year study was conducted on the Macdonald Campus Farm on a 2.4 ha site of shallow St. Amble loamy sand cropped to corn (Zea mays L.). Three types of tillage practice (conventional tillage, reduced tillage, and no-till) were combined with 2 residue levels (with and without) in a randomized complete block design. The effect of these practices on NO 3--N distribution at 0--50 cm in the soil profile, and on plant N uptake were studied. Organic matter, pH, bulk density, and soil moisture contents were also monitored. Residues were found to have a greater influence on soil NO3--N transformations (mineralization and immobilization), than tillage. In July 1996 residues suppressed NO3--N levels in reduced tillage (RT), but increased NO3--N levels in conventional tillage (CT). Residues initially increased N03--N levels in no-till (NT), but a few weeks later caused a sharp decline in NO 3--N levels in NT. In August 1996, RT and NT treatments without residue were found to have much greater concentrations of NO 3--N than those with residue. The effect of N suppression caused by residues was observed in Spring 1996, July 1996, August 1996, and August 1997. Reduced tillage demonstrated less NO 3--N fluctuation than the other tillage treatments. Wheel tracked rows had up to 20 times more NO3--N at 0--15 cm than the non wheel tracked rows, caused by the uneven distribution of N fertilizer. However, high NO3--N levels in the wheel tracked rows decreased to levels comparable with those in non fertilized (non wheel track) rows at 50 cm. Corn yields were not affected by tillage or residue treatments, neither were they influenced by the percentage of tissue N content. (Abstract shortened by UMI.)
8

Capacity of cover crops to capture excess fertilizer and maintain soil efficiency

Isse, Abdullahi. January 1997 (has links)
The use of high N fertilizer in sweet corn (Zea mays L.) and wheat (Triticum aestivium L.) production often results in leaching losses and contamination of ground water. Cover crops planted after harvest of sweet corn and wheat may reduce residual soil NO$ sp- sb3$-N levels by crop N uptake and subsequently minimize NO$ sp- sb3$-N content in gravitational water. Field experiments were conducted on a Ste. Rosalie heavy clay (Humic Gleysol) and a St. Bernard sandy clay loam (Melanic Brunisol) to determine the contribution of the six cover crops to nutrient uptake, subsequent N release, leaching losses, denitrification rates and soil properties such as aggregate stability, organic matter. The cover crops were red clover (Trifolium pratense L.), crimson clover (Trifolium incarnatum L.), forage radish (Raphanus sativus L.), canola (Brassica rapa L.), barley (Hordeum vulgare L.), annual rye grass (Lolium multiflorum L.). Three replicates were used in a split plot arrangement of a randomized complete block experiment. Sweet corn and wheat were grown at three fertilizer N rates, 0-75-150 kg N ha$ sp{-1}$ for sweet corn and 0-45-90 kg N ha$ sp{-1}$ for wheat. Cover crop of forage radish, canola and barley were more effective at absorption or soil N than rye grass and clover species at all sample times. Levels of soluble N in the soil were reduced with cover crop in the off-season. Cover crop plots had higher NO$ sp- sb3$-N levels than control plots in the spring, indicating net mineralization and nitrification. Gravitational water NO$ sp- sb3$-N contents were higher in the control plots relative to cover crop plots at both sites. Therefore growing cover crops after harvest of sweet corn and wheat can reduce residual NO$ sb3$-N level in the soil and thus restrict ground water contamination with fertilizer N.
9

Effects of tillage and corn residues on nitrate-nitrogen and water movement through soil

Serem, Vincent Kipyego Arap January 1995 (has links)
No description available.
10

Soil nitrate-N and plant nitrogen distributions under different tillage practices

Mehdi, Bano B. January 1998 (has links)
No description available.

Page generated in 0.1048 seconds