• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 18
  • 18
  • 18
  • 18
  • 18
  • 18
  • 18
  • 4
  • 3
  • 1
  • Tagged with
  • 90
  • 90
  • 90
  • 25
  • 22
  • 16
  • 15
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The effects of excessive liquid hog manure applications on phosphorus concentrations in soil and surface runoff from corn and forage crops /

MacDonald, Tim. January 2000 (has links)
No description available.
82

Response of Striga-susceptible and Striga-resistant sorghum genotypes to soil phosphorus and colonization by an arbuscular mycorrhizal fungus

Leytem, Alicia B. 11 May 2012 (has links)
Striga, a genus of obligate parasitic weeds in the family Orobanchaceae, has been identified as the most important biological factor limiting agricultural productivity in sub-Saharan Africa. Germination of Striga seeds is triggered by strigolactone root exudates from host plants. Strigolactones also induce hyphal branching in arbuscular mycorrhizal (AM) fungi, which are important for plant uptake of phosphorus in low phosphorus soils. Mechanisms of Striga resistance based on reduced strigolactone production may also convey resistance to AM fungi which would require higher inputs of phosphorus fertilizer to attain optimal crop growth. There is evidence for genetic differences in mycorrhizal responsiveness in other grain crops; therefore it is beneficial for breeders to be aware of these differences when developing Striga-resistant sorghum cultivars. This research aims to determine phosphorus and mycorrhizal responsiveness of sorghum genotypes important for or developed by breeders working on Striga resistance. Phosphorus response curves were determined for twelve sorghum genotypes using pasteurized low phosphorus soil amended to achieve four different phosphorus levels. Simple linear regression was performed on root and shoot dry weight data. Results indicate variability in phosphorus responsiveness within Striga resistant and susceptible genotypes. Seven of these genotypes were selected for continued research, which analyzed responsiveness to phosphorous and differences in mycorrhizal responsiveness in relation to reported mechanisms of Striga resistance. Treatments included three levels of phosphorus amendments and the addition of Funneliformis mosseae inoculum. All genotypes were strongly responsive to P amendment when grown without AM fungi and showed a decrease in responsiveness to P when inoculated with F. mosseae. Trends for all genotypes indicate a greater uptake of P, Zn, and Mg by mycorrhizal plants as compared to nonmycorrhizal plants. All seven genotypes were responsive to mycorrhizae, with a significant increase in biomass for all genotypes, especially at the lowest phosphorus level. The responsiveness to the mycorrhizal fungus does not appear to be directly related to the susceptibility of genotypes to the parasitic weed Striga. / Graduation date: 2012
83

Phosphorous dynamics in soils under contrasting long-term agricultural management practices in the KwaZulu-Natal midlands.

Majaule, Ugele. January 2006 (has links)
Little is known regarding the effects of land use on soil organic matter and P status of South African soils. For that reason, the effects of the main agricultural land uses in the midlands region of KwaZulu-Natal [maize (Zea mays), sugarcane (Saccharum spp), annual ryegrass pasture (Lolium multiflorum), permanent kikuyu pasture (Pennisetum clandestnum), gum (Eucalyptus grandis) and pine (Pinus patula)] on soil organic matter content, microbial biomass C and P and inorganic and organic P pools derived from a modified Hedley P fractionation was investigated on two sites where the longterm history of land management was known. In comparison with undisturbed native grassland, permanent kikuyu pasture resulted in an increase in organic C, organic P and microbial biomass C and P. Maize and sugarcane production resulted in a decrease in organic C, organic P and microbial C and P. Under annual pasture, gum and pine forests, organic matter and microbial biomass concentrations remained similar to those under native grassland. Under native grassland, extractable organic P accounted for 50% or more of the total P content of soils but under agricultural management with regular applications of fertilizer P, there was an increase in the percentage of total P present as inorganic P. Agricultural management greatly affected the distribution of P among the various inorganic and organic P fractions. Resin-Pi and NaHC03-Pi (the potentially-available forms of Pi) showed similar trends with land use being greatly elevated under kikuyu pasture at both sites and sugarcane and maize at one site. This accumulated Pi was thought to have originated from recent fertilizer applications and possibly recently mineralized organic P. Trends for NaOH-Pi with land use differed greatly from those of the Resin- and NaHC03Pi fractions. Concentrations were notably high under maize and sugarcane production. Of the pools of soil organic P, the NaHC03-Po fraction was most greatly affected by land use, being elevated under kikuyu and decreased under maize and sugarcane. This supports the assertion that it is the NaHC03-Po fraction that is the most labile soil organic P pool. It was concluded that land use greatly affects soil organic C and P status, soil microbial biomass C and P contents, soil inorganic P concentrations and the distribution of P among the various P fractions. A short-term (8 weeks) laboratory incubation experiment was carried out to compare the effects of inorganic (KH2P04) and organic (cattle manure, poultry manure and maize crop residues) sources of P, applied at a rate equivalent to 30 kg P ha-1 , on soil inorganic and organic P fractions and the potential availability of soil P. Additional treatments consisted of lime [Ca(OHhl at 5 ton ha-1 and lime plus inorganic P. Applications of lime raised soil pH to a similar extent after 1, 4 and 8 weeks incubation. After 8 weeks, a small increase in soil pH was also noted for the cattle and poultry manure and maize residue treatments. For the inorganic P fractions, substantial treatment effects were observed only for the Resin-Pi fraction. The inorganic P source was more effective than the organic ones at increasing Resin-Pi after 1 and 4 weeks incubation and of the organic sources, cattle and poultry manure were more effective than maize residues. Resin-Pi concentrations generally increased between 1 and 4 weeks incubation but then declined rapidly between 4 and 8 weeks incubation. After 8 weeks incubation, treatment effects on Resin-Pi were small. Concentrations of NaHC03-Pi, dilute HCI-Pi and concentrated HCI-Pi all declined over the incubation period. There was no clear trend with incubation for NaOH-Pi although for the poultry manure and maize treatments, concentrations declined between 4 and 8 weeks incubation. In general, concentrations of NaHC03-Po were greater for organic than inorganic P sources after 8 weeks incubation suggesting microbial immobilization of P in these treatments. There were increases in NaHC03-Po and concentrated HCI-Po over the incubation period suggesting progressive immobilization of P from the Pi fractions that declined in concentration during the incubation. Concentrations of NaOH-Po were not greatly affected by incubation period. The lime treatments, however, had lower NaOH-Po concentrations than the others suggesting that liming may have stimulated microbial mineralization of Po. Residual-P concentrations increased over the incubation period. This was attributed to conversion of extractable Pi fractions into recalcitrant, non-extractable Pi forms and/or immobilization of Pinto intransigent organic forms. / Thesis (M.Sc.)-University of KwaZulu-Natal, Pietermaritzburg, 2006.
84

The effects of excessive liquid hog manure applications on phosphorus concentrations in soil and surface runoff from corn and forage crops /

MacDonald, Tim. January 2000 (has links)
A study was initiated in 1989 to examine the effects of applying excess liquid hog manure with mineral fertilizers to corn and forage crops. Manure was applied yearly at twice the recommended level either in the spring, fall or a combination of both spring and fall applications. Mineral fertilizers were applied at recommended levels to plots receiving only mineral fertilizers and to manure treatment plots. Two control plots received no fertilizers. / During the summer of 1999, soil samples were taken at a depth of 0--2 cm and analysed using different phosphorus extractants. Six runoff events were sampled and analysed for different phosphorus fractions. / Strong correlations were found in corn plots between average dissolved reactive phosphorus concentrations in runoff and soil test phosphorus concentrations. Timing of manure application had a significant impact on both soil and runoff phosphorus concentrations. Runoff from forage plots had significantly higher concentrations of dissolved phosphorus, but phosphorus loads were greater from corn plots due to higher runoff volumes. Corn plots released significantly higher particulate phosphorus concentrations than forage plots because of higher sediment loads in runoff from corn plots.
85

Effects of land-use change on phosphorus forms in South-West Australian soils

George, Suman Jacob January 2004 (has links)
[Truncated abstract] Eleven sites, each with the trio of land uses: Eucalyptus globulus plantation, pasture and natural vegetation, representing from the Mediterranean climate, high rainfall region (<550 mm annually) of south-western Australia were investigated to assess medium-term changes in the P-supplying capacity of soils in eucalypt plantations growing on agricultural land. The natural vegetation soils were a benchmark for comparing soil P change since land clearing and development for agriculture. The experimental framework provided an ideal basis for studying changes in P forms since land clearing and fertilization for agriculture and the ensuing conversion to plantations (on an average 9 years ago). Conventional soil P indices measure plant available P that is more relevant to short duration annual crops and pastures. To predict medium-term P availability, P forms were determined using Hedley et al.’s (1982) fractionation scheme and fractions were grouped using the Guo and Youst (1998) criteria into readily, moderately and sparingly available P. The P species were also determined by 31P NMR spectroscopy of 0.5M NaOH-0.1M EDTA extracts. Hedley et al.’s (1982) inorganic P extracted by anion exchange resin and by NaHCO3 are widely considered to be approximations to the actual plant available P. The availability to plants of other P fractions is less certain and this is examined in an experiment to compare the plant availability of various P fractions in soils from fertilized and unfertilized land uses following exhaustive cropping in the glasshouse. The soil texture for the sites studied included coarse sand, loamy sand, clayey sand, and sandy loam. Surface soils (0-10 cm) have pH(CaCl2) in the acidic range (mean 4.4) and there is no significant difference due to differences in land use (P<0.05). The soils are of low EC (1:5 H2O) - 6 mS m-1. There is an almost 5-fold variation in organic C among sites (from 1.4% to 8%) but organic C values did not show any significant effect (P<0.05) of changes in land use. To evaluate the degree of similarity of soils within each triplet set at a site principal component analysis was carried out on those soil chemical⁄mineralogical characteristics that were least likely to be affected by changes in land use practices. This analysis showed good matching of the triplet of sub-sites on the whole, especially for the duo of pasture and plantation land uses. This degree of matching of the trio of land uses was considered while interpreting the effects of land use on the forms and behaviour of soil P, and variations due to various extents of mismatch were mostly addressed using statistical techniques including regression analysis to interpret sub-site difference
86

Effect of variable rates of cattle and poultry manure-based phospho-composts on growth, yield and quality of potato (Solanum tuberosum L.)

Mmadi, Mashupyane Josephine January 2019 (has links)
Thesis (M.Sc. (Soil Science)) -- University of Limpopo, 2019 / Phosphorus (P) deficiency has been reported in 30- 40% of global arable land, which poses a huge threat in potato production because of its critical role in the early vegetative development and tuber formation. The use of low cost ground phosphate rock (GPR) as an alternative P fertilizer source has gained recognition. Although GPR contains high P percentage, its direct application is less beneficial immediately due to its low reactivity which makes P unavailable for plant uptake. In this experiment, GPR was co-composted with cattle and poultry manure in order to enhance P acquisition by the potato crop. The aim of this study was to evaluate the potential of phosphocompost application as a cheaper alternative P-source for potato production. The experiment was conducted on Mondial and Valor… potato cultivars at the University of Limpopo Syferkuil Experimental farm in 2015 and 2016. Poultry (PM) and cattle manure (CM)-based phospho-compost mix ratios of 8:2 and 7:3 were applied at 0, 20, 40, 80 and 120 kg P/ha. The trial was laid out in a split plot arrangement fitted into a randomised complete block design with treatments replicated three times. Results indicated statistically significant effects of phospho-compost types on soil pH and available P content at both flowering and harvesting growth stages in 2015 and 2016 with the higher available P content found in the PM-based phospho-composts. In both seasons, highly significant differences in fresh and dry leaf samples among phospho-compost types were obtained. Highly significant season x compost type interaction effects were also recorded on leaf biomass as well as the 2015 tuber weight, with highest tuber weight obtained in plots that received PM7:3-based phospho-compost at 80 t/ha rate. Notwithstanding the non-significant effect of compost type on tuber yield in 2016, higher yield was obtained from PM8:2. Although the grading of tubers showed no significant response to phospho-compost application; the difference between small and medium tubers obtained from 2016 trial was significantly affected by phosphocompost application rates. The CM8:2 mix ratio gave the highest baby tubers (16.87%) while PM7:3 mix ratio gave the highest (36.32%) medium tubers. The grading of the potato tubers revealed a mostly class 1 dominated by baby, small and medium size tubers in the 2015 harvest while the 2016 harvest was also mostly class 1 but dominated by small, medium and large-small size tubers. Tuber size and class were vi most favored by the PM-based phospho-compost applications in both planting seasons. None of phospho-compost types and application rates had significant effect on the measured nutrient concentrations of both plant parts. However, the differences in nutrient concentrations across seasons and plant parts were significant except for Ca. The measure tissue P concentration from the 2016 trial was within the required range suggesting that phospho-compost utilization, particularly the poultry manure-based, in potato production can be beneficial in addressing P deficiency. The PM8:2 mixed ratio resulted in increased soil available P content, potato tuber yield in 2016 and the P concentration across the two plant parts evaluated. The concentration of soil available P and tissue P showed increases with higher application rates albeit non-significance. Future research on the optimum application rate is suggested on a wide range of soils for the various phospho-compost types. / Potato SA and the National Research Foundation (NRF)
87

Pasture responses to lime and phosphorus on acid soils in Natal.

Miles, Neil. January 1986 (has links)
No abstract available. / Thesis (Ph.D.)-University of Natal, Pietermaritzburg, 1986.
88

Phosphorus benefits of white lupin, field pea and faba bean to wheat production in Western Australian soils

Nuruzzaman, Mohammad January 2005 (has links)
[Truncated abstract] Soils of Western Australian cropping regions are very low in phosphorous. White lupin, chickpea, and faba bean are being increasingly used in rotations with wheat on these soils. Yield of wheat after a legume crop is frequently higher than its yield after wheat. It has been reported that in addition to nitrogen, legumes can also contribute to improve the availability of phosphorous for the subsequent crops. This PhD research project aimed at optimising the economic returns of wheat-legume rotations through more efficient use of P fertiliser in the legume phase as well as enhanced availability of soil P in the subsequent wheat phase
89

Soil organic matter decomposition : effects of organic matter addition on phosphorus dynamics in lateritic soils

Yusran, Fadly Hairannoor January 2005 (has links)
[Truncated abstract] Relationships between the persistence of organic matter added to soil, the dynamics of soil organic carbon (C) and phosphorus (P) were examined in four experiments on lateritic soils of Western Australia. The main objective was to quantify the release of P following organic matter application in soils which have high P adsorbing capacity. Another objective was to confirm that due to its recalcitrant materials, the effect of peat lasted longer in soil than other sources of organic matter in terms of increasing plant-available P fractions. Three experiments were conducted under glasshouse conditions for various lengths of time, with nine- to twelve-month incubations to investigate these hypotheses. As expected, organic matter with lower C:N ratios than peat (lucerne hay) decomposed more rapidly compared with peat, and the most active mineralisation took place within the first three months of incubation. Soil organic-C (extracted by 0.5 M K2SO4) had a significant positive correlation with P extracted with 0.5 M NaHCO pH 8.53. For a higher application rate (120 ton ha-1), peat was better than wheat straw and lucerne hay in increasing extractable bicarbonate-P concentrations in soil, especially at incubation times up to 12 months. Throughout the experiment, peat was associated with a steady increase in all parameters measured. In contrast to peat, nutrient release from lucerne hay and wheat straw was rapid and diminished over time. There was a tendency for organic-C (either in the form of total extractable organic-C or microbial biomass-C) to steadily increase in soil with added peat throughout the experiment. Unlike wheat straw and lucerne hay, extractable organic-C from peat remained in soil and there was less C loss in the form of respiration. Therefore, peat persisted and sequestered C to the soil system for a longer time than the other source of organic matter. Freshly added organic matter was expected to have a greater influence on P transformation from adsorbed forms in lateritic soils than existing soil organic matter. By removing the existing soil organic matter, the effect of freshly applied organic matter can be determine separately from that of the existing soil organic matter for a similar organic-C content. In order to do this, some soil samples were combusted up to 450° C to eliminate inherent soil organic matter. The release of P was greater when organic-C from fresh organic matter was applied to combusted soils than in uncombusted soils that contained the existing soil organic matter. The exception only applied for parameters related to soil micro-organisms such as biomass-C and phosphatase. For such parameters, new soil organic matter did not create conditions favourable for organisms to increase in activity despite the abundance of organic matter available. More non-extractable-P was formed in combusted soils compared to bicarbonate-P and it contributed to more than 50% of total-P. As for the first experiment, peat also showed a constant effect in increasing bicarbonate extractable-P in the soil
90

Impact of long-term manure application on soil macronutrient levels in Southern Alberta

Simpson, Lisa G January 2010 (has links)
The role of manure applications on soil nutrient dynamics in years after manure applications cease has not been extensively studied. An investigation of two long-term manure trials in the Battersea Drain watershed in southern Alberta was undertaken in 2004 to determine changes in soil nutrient status three years after the initial study was completed. The investigation of the nutrient status of an intensive livestock operation was another component of the study. There was a significant decrease in levels of soil nitrogen, phosphorus and potassium in the plots that received manure application rates over 60 Mg ha-1. The nutrient status of the farm showed a net export of nitrogen and an accumulation of phosphorus and potassium in the soil. Recommendations for alternate methods for handling manure were presented. / x, 120 leaves : ill (some col.), col. maps ; 29 cm

Page generated in 0.0757 seconds