Spelling suggestions: "subject:"Soils--China--Hong finalanalysis"" "subject:"Soils--China--Hong nominalanalysis""
1 |
Effects of acacias on the physical and chemical properties of granitic soils in Hong Kong.January 1995 (has links)
by Fung, Chun-hong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1995. / Includes bibliographical references (leaves 111-123). / Abstract --- p.i / Acknowledgments --- p.iii / List of Tables --- p.v / List of Figures --- p.vii / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Reforestation in Hong Kong --- p.1 / Chapter 1.2 --- Conceptual framework of the study --- p.2 / Chapter 1.3 --- Objectives of the study --- p.5 / Chapter 1.4 --- Significance of the study --- p.6 / Chapter 1.5 --- Organization of the thesis --- p.6 / Chapter Chapter 2 --- Literature Review / Chapter 2.1 --- Vegetation and soils --- p.8 / Chapter 2.2 --- Trees and soil physical properties --- p.9 / Chapter 2.2.1 --- Aggregate stability --- p.9 / Chapter 2.2.2 --- Organic matter and aggregate stability --- p.10 / Chapter 2.2.3 --- Other factors affecting aggregate stability --- p.12 / Chapter 2.2.4 --- Reforestation and bulk density --- p.12 / Chapter 2.2.5 --- Reforestation and soil moisture --- p.13 / Chapter 2.3 --- Trees and soil chemical properties --- p.14 / Chapter 2.3.1 --- Exchangeable acidity --- p.14 / Chapter 2.3.2 --- Exchangeable acidity and cation exchange capacity --- p.15 / Chapter 2.3.3 --- Organic matter and cation exchange capacity --- p.15 / Chapter 2.3.4 --- Clay and cation exchange capacity --- p.16 / Chapter 2.3.5 --- Organic matter and nitrogen --- p.17 / Chapter 2.3.6 --- Organic matter and phosphorus --- p.18 / Chapter 2.4 --- Litter decomposition --- p.18 / Chapter 2.4.1 --- Factor affecting litter decomposition --- p.19 / Chapter 2.4.2 --- Effects of litter on soil nutrient reserve --- p.21 / Chapter Chapter 3 --- The Study Area / Chapter 3.1 --- Location --- p.23 / Chapter 3.2 --- Geology --- p.23 / Chapter 3.3 --- Soils --- p.25 / Chapter 3.4 --- Vegetation --- p.27 / Chapter 3.4.1 --- Reforestation since the mid-1980s --- p.27 / Chapter 3.4.2 --- Growth performance of the acacias --- p.28 / Chapter 3.4.3 --- Undergrowth of the acacia woodlands --- p.29 / Chapter Chapter 4 --- Effects on Soil Physical Properties / Chapter 4.1 --- Introduction --- p.31 / Chapter 4.2 --- Methodology --- p.33 / Chapter 4.2.1 --- Soil texture --- p.33 / Chapter 4.2.2 --- Bulk density and porosity --- p.33 / Chapter 4.2.3 --- Penetration resistance --- p.34 / Chapter 4.2.4 --- Aggregate stability --- p.34 / Chapter 4.2.5 --- Water characteristic curve --- p.35 / Chapter 4.2.6 --- Infiltration rate --- p.35 / Chapter 4.3 --- Statistical analysis --- p.35 / Chapter 4.4 --- Results --- p.36 / Chapter 4.4.1 --- Soil texture --- p.36 / Chapter 4.4.2 --- "Bulk density, porosity and penetration resistance" --- p.36 / Chapter 4.4.3 --- Aggregate stability --- p.38 / Chapter 4.4.4 --- Infiltration --- p.39 / Chapter 4.4.5 --- Water characteristic curve --- p.40 / Chapter 4.5 --- Discussion --- p.42 / Chapter 4.5.1 --- Inherent physical properties of granitic soil --- p.42 / Chapter 4.5.2 --- Effects of acacias on the aeration of granite soil --- p.44 / Chapter 4.5.3 --- Effects of acacias on the penetration resistance and aggregate stability of granitic soil --- p.46 / Chapter 4.5.4 --- Effects of acacias on the water transmission property of granitic soil --- p.47 / Chapter 4.5.5 --- Effects of acacias on the water retention property of granitic soil --- p.50 / Chapter 4.6 --- Conclusion --- p.52 / Chapter Chapter 5 --- Effects on Soil Chemical Properties / Chapter 5.1 --- Introduction --- p.54 / Chapter 5.2 --- Methodology --- p.55 / Chapter 5.2.1 --- Sampling --- p.55 / Chapter 5.2.2 --- Soil reaction and conductivity --- p.55 / Chapter 5.2.3 --- Organic carbon --- p.55 / Chapter 5.2.4 --- Total Kjeldahl nitrogen --- p.56 / Chapter 5.2.5 --- Total phosphorus --- p.56 / Chapter 5.2.6 --- "Exchangeable K, Ca, Mg and Na" --- p.56 / Chapter 5.2.7 --- Exchangeable A1 and H --- p.57 / Chapter 5.2.8 --- Carbon : nitrogen ratio --- p.57 / Chapter 5.3 --- Statistical analysis --- p.57 / Chapter 5.4 --- Results --- p.58 / Chapter 5.4.1 --- Conductivity --- p.58 / Chapter 5.4.2 --- Soil pH and exchangeable acidity --- p.58 / Chapter 5.4.3 --- Soil organic matter --- p.61 / Chapter 5.4.4 --- Total Kjeldahl nitrogen --- p.62 / Chapter 5.4.5 --- Total phosphorus --- p.63 / Chapter 5.4.6 --- "Exchangeable K, Ca, Mg and Na" --- p.64 / Chapter 5.5 --- Discussion --- p.67 / Chapter 5.5.1 --- Inherent chemical properties of granitic soil --- p.67 / Chapter 5.5.2 --- Effects of acacias on the acidity of granitic soil --- p.69 / Chapter 5.5.3 --- "Effects of acacias on the organic matter, total nitrogen and phosphorus of granitic soil" --- p.71 / Chapter 5.5.4 --- Effects of acacias on the exchangeable cations of granitic soil --- p.74 / Chapter 5.6 --- Conclusion --- p.76 / Chapter Chapter 6 --- Litter Decomposition / Chapter 6.1 --- Introduction --- p.78 / Chapter 6.2 --- Methodology --- p.79 / Chapter 6.2.1 --- Standing litter --- p.79 / Chapter 6.2.2 --- Litter decomposition --- p.80 / Chapter 6.2.3 --- Chemical analysis --- p.80 / Chapter 6.3 --- Statistical analysis --- p.81 / Chapter 6.4 --- Results --- p.81 / Chapter 6.4.1 --- Standing litter --- p.81 / Chapter 6.4.2 --- Chemical composition of fresh litters --- p.82 / Chapter 6.4.3 --- Cumulative dry weight loss of litters --- p.82 / Chapter 6.4.4 --- Cumulative weight loss of nutrients --- p.84 / Chapter 6.4.5 --- C : element ratios --- p.88 / Chapter 6.5 --- Discussion --- p.88 / Chapter 6.5.1 --- Litter decomposition --- p.88 / Chapter 6.5.2 --- Litter decomposition and soil organic matter --- p.93 / Chapter 6.5.3 --- Nutrient release patterns --- p.94 / Chapter 6 5 --- 4 Litter decomposition and soil nutrient reserves --- p.96 / Chapter 6.6 --- Conclusion --- p.98 / Chapter Chapter 7 --- Conclusion / Chapter 7.1 --- Summary of findings --- p.100 / Chapter 7.2 --- Implication of the study --- p.103 / Chapter 7.3 --- Limitations of the study --- p.106 / Chapter 7.4 --- Suggestion for future study --- p.108 / References --- p.111 / Appendice --- p.124
|
2 |
Simulation study on the effects of heat and ash on a frequently burnt soil in Hong Kong.January 2005 (has links)
Lam Lai-yee. / Thesis submitted in: November 2004. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 124-140). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.vii / Table of contents --- p.viii / List of Tables --- p.xi / List of Figures --- p.xiii / List of Plates --- p.xiv / Chapter CHAPTER ONE --- Introduction / Chapter 1.1 --- Introduction --- p.1 / Chapter 1.2 --- Background and ecological impact of hill fires in Hong Kong --- p.2 / Chapter 1.3 --- Conceptual framework of study --- p.4 / Chapter 1.4 --- Objectives of the study --- p.10 / Chapter 1.5 --- Significance --- p.11 / Chapter 1.6 --- Organization of the thesis --- p.12 / Chapter CHAPTER TWO --- The study area / Chapter 2.1 --- Introduction --- p.14 / Chapter 2.2 --- Geographical setting of Hong Kong --- p.14 / Chapter 2.2.1 --- Climate of Hong Kong --- p.14 / Chapter 2.2.2 --- Geology of Hong Kong --- p.15 / Chapter 2.2.3 --- Soils of Hong Kong --- p.16 / Chapter 2.2.4 --- Vegetation of Hong Kong --- p.17 / Chapter 2.3 --- Site selection --- p.18 / Chapter 2.4 --- Grassy Hill --- p.20 / Chapter CHAPTER THREE --- Heating effect on the properties of ash / Chapter 3.1 --- Introduction --- p.23 / Chapter 3.2 --- Experimental design and methodology / Chapter 3.2.1 --- Selection of simulation heating --- p.26 / Chapter 3.2.2 --- "Heating intensity at 200°-600°C for 1,5 and 15 minutes" --- p.27 / Chapter 3.2.3 --- Field work --- p.27 / Chapter 3.2.4 --- Heating method --- p.28 / Chapter 3.2.5 --- Chemical analysis --- p.28 / Chapter 3.2.6 --- Analysis of data --- p.32 / Chapter 3.3 --- Results and Discussion / Chapter 3.3.1 --- Heating effect on ash weight and pH --- p.33 / Chapter 3.3.2 --- "Heating effect on ash organic C, N and P" --- p.33 / Chapter 3.3.3 --- Heating effect on ash available cations --- p.40 / Chapter 3.4 --- Conclusion --- p.42 / Chapter CHAPTER FOUR --- The effect of heat and ash on soil / Chapter 4.1 --- Introduction --- p.44 / Chapter 4.2 --- Methodology / Chapter 4.2.1 --- Field work --- p.48 / Chapter 4.2.2 --- Soil heating methods --- p.48 / Chapter 4.2.3 --- Chemical analysis --- p.49 / Chapter 4.2.4 --- Statistical analysis --- p.52 / Chapter 4.3 --- Results and Discussion / Chapter 4.3.1 --- The effect of heat and ash on soil pH --- p.53 / Chapter 4.3.2 --- "The effect of heat and ash on soil organic matter, N and P" --- p.55 / Chapter 4.3.3 --- The effect of heat and ash on soil cations --- p.62 / Chapter 4.4 --- Conclusion --- p.65 / Chapter CHAPTER FIVE --- Nitrogen and phosphorus mineralization after heating / Chapter 5.1 --- Introduction --- p.67 / Chapter 5.2 --- Methodology / Chapter 5.2.1 --- Heating and incubation method --- p.70 / Chapter 5.2.2 --- Laboratory methods --- p.72 / Chapter 5.2.3 --- Statistical analysis --- p.72 / Chapter 5.3 --- Results and discussion / Chapter 5.3.1 --- Temporal changes of N mineralization in heated bare soils --- p.72 / Chapter 5.3.2 --- The effect of ash on N mineralization --- p.78 / Chapter 5.3.3 --- Comparison of N mineralization with other studies --- p.79 / Chapter 5.3.4 --- Temporal changes of P mineralization in the heated bare soils --- p.81 / Chapter 5.3.5 --- The effect of ash on P mineralization --- p.83 / Chapter 5.3.6 --- Comparison of P mineralization to other studies --- p.84 / Chapter 5.4 --- Conclusion --- p.85 / Chapter CHAPTER SIX --- Vertical movement of mineral N in ash-covered soil columns / Chapter 6.1 --- Introduction --- p.87 / Chapter 6.2 --- Methodology / Chapter 6.2.1 --- Package of soil columns --- p.89 / Chapter 6.2.2 --- Water addition and extraction of pore water --- p.90 / Chapter 6.2.3 --- Statistical analysis --- p.92 / Chapter 6.3 --- Results and Discussion / Chapter 6.3.1 --- Mineral N in the pore water --- p.92 / Chapter 6.3.2 --- The effect of ash on mineral N in pore water --- p.97 / Chapter 6.3.3 --- The leaching loss of mineral N --- p.98 / Chapter 6.3.4 --- Comparisons with other studies --- p.103 / Chapter 6.4 --- Conclusion --- p.105 / Chapter CHAPTER SEVEN --- Integrative discussion / Chapter 7.1 --- Summary of major findings --- p.107 / Chapter 7.2 --- Clarifying some misconceptions about the effect of fire --- p.110 / Chapter 7.3 --- Estimated losses of N and P from heating --- p.112 / Chapter 7.4 --- Nutrient supplying capacity of soils after heating --- p.115 / Chapter 7.5 --- Why are repeatedly burnt areas reduced to grassland? --- p.118 / Chapter 7.6 --- Implication on the restoration of fire-affected areas --- p.119 / Chapter 7.7 --- Limitations of the study --- p.121 / Chapter 7.8 --- Suggestions for future research --- p.122 / References --- p.124 / Appendices --- p.141
|
3 |
Nitrogen and phosphorus dynamics in Hong Kong urban park soils.January 2005 (has links)
Liu Wing Ting. / Thesis submitted in: November 2004. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 141-156). / Abstracts in English and Chinese. / Abstract (English) --- p.i / Abstract (Chinese) --- p.iii / Acknowledgments --- p.v / List of Tables --- p.vii / List of Figures --- p.ix / List of Plates --- p.x / List of Appendices --- p.xi / Chapter CHAPTER 1 --- INTRODUCTION / Chapter 1.1 --- Urban ecological environment and the urban parks in Hong Kong --- p.1 / Chapter 1.2 --- Conceptual framework of the study --- p.4 / Chapter 1.3 --- Objectives of the study --- p.9 / Chapter 1.4 --- Scope of the study --- p.10 / Chapter 1.5 --- Significance of the study --- p.11 / Chapter 1.6 --- Organization of the thesis --- p.12 / Chapter CHAPTER 2 --- LITERATURE REVIEW / Chapter 2.1 --- Introduction --- p.13 / Chapter 2.2 --- Urban parks and urban soils --- p.13 / Chapter 2.3 --- Urban soils: properties and problems --- p.14 / Chapter 2.3.1 --- Overseas studies about urban soils --- p.15 / Chapter 2.3.2 --- Urban soils in Hong Kong --- p.16 / Chapter 2.4 --- Nitrogen dynamics --- p.22 / Chapter 2.4.1 --- The internal N cycle and N transformations in soil --- p.22 / Chapter 2.4.2 --- Factors affecting nitrogen dynamics in soil --- p.24 / Chapter (i) --- "Soil moisture and temperature, seasonality and spatial variation" --- p.24 / Chapter (ii) --- Soil pH and texture --- p.26 / Chapter (iii) --- Litter quality and C:N ratio --- p.26 / Chapter (iv) --- Disturbance --- p.27 / Chapter (v) --- Fertilizer input and management intensity --- p.27 / Chapter 2.4.3 --- N dynamics in urban areas --- p.28 / Chapter 2.4.4 --- Research of N dynamics in Hong Kong --- p.29 / Chapter 2.5 --- Phosphorus dynamics --- p.30 / Chapter 2.5.1 --- Gains and losses of P from soil system --- p.30 / Chapter 2.5.2 --- Forms and transformations of phosphorus in soil --- p.31 / Chapter 2.5.3 --- Factors affecting P dynamics in soil --- p.34 / Chapter (i) --- Fluctuations of soil moisture --- p.34 / Chapter (ii) --- Liming and pH adjustment --- p.34 / Chapter (iii) --- Cultivation and management intensity --- p.35 / Chapter (iv) --- Vegetation cover and disturbances --- p.35 / Chapter 2.5.4 --- P dynamics in urban areas --- p.36 / Chapter CHAPTER 3 --- STUDY AREA / Chapter 3.1 --- General situation of Hong Kong and the study locations --- p.37 / Chapter 3.2 --- Background of the two parks: Kowloon Park and Tin Shui Wai Park --- p.40 / Chapter 3.3 --- Climate --- p.43 / Chapter 3.4 --- Park vegetation --- p.45 / Chapter 3.5 --- Park soils --- p.47 / Chapter 3.6 --- Park management and horticultural routines --- p.47 / Chapter CHAPTER 4 --- BASELINE STUDY OF URBAN PARK SOIL PROPERTIES / Chapter 4.1 --- Introduction --- p.52 / Chapter 4.2 --- Methodology --- p.54 / Chapter 4.2.1 --- Sampling --- p.54 / Chapter 4.2.2 --- Soil texture --- p.55 / Chapter 4.2.3 --- Soil reaction --- p.55 / Chapter 4.2.4 --- Total Kjeldahl nitrogen (TKN) --- p.55 / Chapter 4.2.5 --- Mineral nitrogen (ammonium and nitrate nitrogen) --- p.55 / Chapter 4.2.6 --- Total phosphorus --- p.56 / Chapter 4.2.7 --- Available phosphorus --- p.56 / Chapter 4.2.8 --- Organic carbon --- p.56 / Chapter 4.2.9 --- "Exchangeable cations (K, Na, Ca, Mg)" --- p.57 / Chapter 4.2.10 --- Carbon: nitrogen ratio and carbon: phosphorus ratio --- p.57 / Chapter 4.3 --- Statistical analysis --- p.57 / Chapter 4.4 --- Results --- p.58 / Chapter 4.4.1 --- Texture --- p.58 / Chapter 4.4.2 --- Soil pH --- p.58 / Chapter 4.4.3 --- Organic matter --- p.59 / Chapter 4.4.4 --- Total Kjeldahl nitrogen and C:N ratio --- p.60 / Chapter 4.4.5 --- Ammonium nitrogen and nitrate nitrogen --- p.61 / Chapter 4.4.6 --- Total phosphorus and C:P ratio --- p.62 / Chapter 4.4.7 --- Available phosphorus --- p.64 / Chapter 4.4.8 --- Exchangeable cations --- p.65 / Chapter 4.5 --- Discussion --- p.66 / Chapter 4.5.1 --- Park soils under different vegetation covers --- p.67 / Chapter 4.5.2 --- Duration of park management and influence of land use outside the parks --- p.72 / Chapter 4.5.3 --- Quality of substrates in Kowloon Park and Tin Shui Wai Park --- p.76 / Chapter 4.5.4 --- C:N ratio and C:P ratio --- p.83 / Chapter 4.6 --- Conclusion --- p.84 / Chapter CHAPTER 5 --- NITROGEN DYNAMICS OF URBAN PARK SOILS / Chapter 5.1 --- Introduction --- p.87 / Chapter 5.2 --- Methodology --- p.89 / Chapter 5.2.1 --- In situ incubation --- p.89 / Chapter 5.2.2 --- "Determination of N mineralization, leaching and uptake" --- p.91 / Chapter 5.3 --- Results --- p.94 / Chapter 5.3.1 --- "Net ammonification, NH4-N leaching and uptake" --- p.94 / Chapter 5.3.2 --- "Net nitrification, NO3-N leaching and uptake" --- p.95 / Chapter 5.3.3 --- "Net N mineralization, N leaching and uptake" --- p.96 / Chapter 5.4 --- Discussion --- p.97 / Chapter 5.4.1 --- Nitrogen mineralization and immobilization --- p.98 / Chapter 5.4.2 --- Comparison with other studies --- p.100 / Chapter 5.4.3 --- Nitrogen leaching and uptake --- p.103 / Chapter 5.5 --- Conclusion --- p.108 / Chapter CHAPTER 6 --- PHOSPHORUS DYNAMICS OF URBAN PARK SOILS / Chapter 6.1 --- Introduction --- p.110 / Chapter 6.2 --- Methodology --- p.112 / Chapter 6.3 --- Results --- p.113 / Chapter 6.4 --- Discussion --- p.115 / Chapter 6.4.1 --- Phosphorus mineralization and immobilization --- p.115 / Chapter 6.4.2 --- Phosphorus leaching and uptake --- p.118 / Chapter 6.4.3 --- Comparison with other studies --- p.120 / Chapter 6.5 --- Conclusion --- p.122 / Chapter CHAPTER 7 --- CONCLUSION / Chapter 7.1 --- Summary of findings --- p.124 / Chapter 7.2 --- Implications of the study --- p.128 / Chapter 7.2.1 --- Chemical characteristics of urban park soils and their relationship to management --- p.128 / Chapter 7.2.2 --- Management practices for different vegetation types and species --- p.133 / Chapter 7.3 --- Limitations of the study --- p.136 / Chapter 7.4 --- Suggestions for future study --- p.139 / REFERENCES --- p.141 / APPENDICES --- p.157
|
Page generated in 0.0529 seconds