• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Recovery, resilience and stability of piospere systems in the Kruger National Park.

Matchett, Katherine Jean. 27 May 2014 (has links)
Water provision is an important tool in the management of savanna ecosystems. Artificial water sources are a potential focus for degradation (biodiversity and loss of ecosystem resilience at a range of spatio-temporal scales), because they alter plant-animal interactions and soil function and stability, through the creation of piospheres. This study was undertaken as part of a drive by the Kruger National Park (KNP) to enable managers to integrate artificial waterhole management (e.g. waterhole closure or rotation) when setting goals for heterogeneity and biodiversity conservation in the park. The over-arching goal was to quantify the relationship between water provision and different attributes of heterogeneity, as part of a broader initiative to place water provision and piospheres within an ecosystem threshold framework. Herbivore utilisation gradients (piospheres) around artificial waterholes in the KNP, described in 1990, were resurveyed in 2006-2007, against a backdrop of waterhole closure in the KNP, to contribute to an understanding of the factors governing recovery and resilience in grazing systems. The responses of the plant community and soil parameters to a relaxation of herbivore utilisation pressure around closed waterholes (recovering piospheres) were examined, as were changes in the same parameters at sites that have remained open (active piospheres). These ecosystem properties were considered in relation to structural and functional ecosystem thresholds, and the piospheres surveyed incorporated a range of rainfall and edaphic gradients in the KNP. Herbaceous basal cover and soil infiltration capacity both increased significantly between 1990 and 2006/7, regardless of waterhole status. This was linked to higher rainfall in 2006/7, compared to 1990. The only vegetation variables to respond consistently to distance from water were the remote-sensed Normalized Difference Vegetation Index (NDVI) and herbaceous species composition. NDVI increased with distance from water, and annual grasses and forbs were most abundant close to water. Perennial, disturbance-sensitive climax species increased in abundance further from water. Soil analyses (N, P, pH, organic matter, and texture) and field measurements (infiltration, compaction) revealed no systematic piosphere patterns. Waterhole closure did not result in soil or vegetation recovery, but piosphere intermittency and the increases of basal cover and infiltration rate indicated that ecosystem resilience has not been compromised vii by long-term artificial water provision in the KNP. This study has shown that the traditional piosphere model is of limited use in sub-humid savanna ecosystems like the KNP during above-average rainfall periods. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2010.

Page generated in 0.1239 seconds