• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effets de la pression interstitielle sur la réponse sismique des sols : modélisation numérique 1D/ 3 composantes

Pham, Viet Anh 29 November 2013 (has links) (PDF)
Lors de séismes forts, la propagation des ondes sismiques dans les sols met en jeu des non linéarités de comportement qui se manifestent différemment selon le niveau de sollicitation. En effet, pour de faibles déformations (généralement <10^{-6}), une loi de comportement linéaire (i.e. module et amortissement indépendants du niveau de sollicitation) permet de reproduire les observations expérimentales sur site. En revanche, pour des déformations plus élevées, une loi de comportement non linéaire hystérétique est nécessaire pour décrire l'évolution de la rigidité et des dissipations énergétiques au cours de la sollicitation sismique. De plus, comme les séismes forts sont caractérisés par des amplitudes et des durées plus importantes, le rôle de la pression interstitielle ne peut pas être négligé pour les sols saturés sous fortes sollicitations (mobilité cyclique et liquéfaction). Ces phénomènes peuvent conduire à l'annulation des contraintes effectives et devenir cause de dommages sévères pour les structures et les ouvrages. L'analyse proposée élargit l'applicabilité des modèles de calcul actuels pour une analyse plus fine du risque sismique. En partant d'une formulation aux éléments finis décrivant la propagation des ondes sismiques suivant la direction verticale en prenant en compte le chargement en 3D (l'approche " 1D-3C" : une direction-trois composantes) dans les sols nonlinéaires secs, de nouvelles stratégies pour la prise en compte du rôle de l'eau sont développées. Le modèle de comportement est basé sur la relation entre la pression interstitielle et le travail de la contrainte de cisaillement. Ce modèle décrivant l'évolution de la pression interstitielle considère l'état de contrainte tridimensionnel du matériau. Le modèle est validé par comparaison avec des résultats expérimentaux. L'approche " 1D-3C " a été utilisée pour modéliser la réponse des sols pour 4 séismes réels : le séisme de Superstition Hills en 1987 aux États-Unis (M_{w}=6.7); le séisme de Tohoku en 2011 au Japon (M_{w}=9.1 ); le séisme de Kushiro en 1993 au Japon (M_{w}=7.8) et le séisme d'Emilie Romagne en 2012 en Italie (M_{w}=5.9). Pour les trois premiers séismes, des enregistrements en profondeur et en surface sont disponibles. L'étude de ces trois premiers cas rend possible la validation du modèle par comparaison des données enregistrées et calculées. Le modèle peut donc être considéré comme un outil fiable pour la prédiction de la réponse sismique des sols saturés
2

Dynamic soil-structure interaction : effect of nonlinear soil behavior / Interaction dynamique sol-structure : influence de non linéarités de comportement du sol

Gandomzadeh, Ali 08 February 2011 (has links)
L'interaction dynamique sol-structure a été largement explorée en supposant le comportement linéaire du sol. Néanmoins, pour des séismes d'intensité modérée à forte, la contrainte de cisaillement maximale peut facilement atteindre la limite élastique du sol. Du point de vue de l'interaction sol-structure, les effets non linéaires peuvent modifier la rigidité du sol à la base de la structure ainsi que la quantité d'énergie dissipée dans le sol. En conséquence, ignorer les caractéristiques non linéaires du sol dans l'interaction dynamique sol-structure (IDSS) peut conduire à des prédictions erronées de la réponse de la structure. Le but de ce travail est d'implémenter dans un code numérique une loi de comportement non linéaire pour le sol afin d'examiner l'effet de la nonlinéarité du sol sur l'interaction dynamique sol-structure. De plus, différents aspects sont pris en compte tels que l'effet de la contrainte de confinement sur le module de cisaillement du sol, les conditions statiques initiales, les conditions d'interface entre le sol et la structure, etc. Durant ce travail, une méthode simple de couche absorbante basée sur une formulation de Rayleigh / Caughey pour l'amortissement, qui est généralement disponible dans les logiciels existants d'éléments finis, a également été développée. Les conditions de stabilité des problèmes de propagation d'onde sont étudiées et on montre que les comportements linéaire et non linéaire sont très différents en ce qui concerne la dispersion numérique. La règle habituelle de 10 points par longueur d'onde, recommandée dans la littérature pour les milieux élastiques, apparaît pas suffisante dans le cas non linéaire.Le modèle implémenté est d'abord vérifié numériquement en comparant les résultats avec ceux d'autres codes numériques connus. Après cela, une étude paramétrique est menée pour différents types de structures et des profils de sol variés afin de caractériser les effets non linéaires. Différentes caractéristiques de l'IDSS sont comparées à celles du cas linéaire: modification de l'amplitude et du contenu fréquentiel des ondes se propageant dans le sol, fréquence fondamentale, dissipation de l'énergie dans le sol et réponse du système sol-structure. A travers ces études paramétriques nous montrons qu'en fonction des propriétés du sol, le contenu fréquentiel de la réponse du sol peut changer significativement à cause des nonlinéarités de comportement. Les pics de la fonction de transfert entre le champ libre et le rocher affleurant se décalent vers les basses fréquences et l'amplification se produit dans cette gamme de fréquences. Une réduction de l'amplification pour les hautes fréquences et même une dé-amplification peuvent se produire pour un fort niveau des mouvements d'entrée. Ces changements influencent la réponse de la structure. Ce travail montre également que la proximité des fréquences fondamentales de la structure et du sol influence fortement l'interaction sol-structure. Enfin, l'effet du poids de la structure et du balancement de la superstructure peut être significatif. Finalement, le bassin de Nice est utilisé comme un exemple de propagation d'onde dans un milieu non linéaire hétérogène et d'interaction dynamique sol-structure. La réponse du bassin dépend fortement de la combinaison de la nonlinéarité du sol, des effets topographiques et du contraste d'impédance entre les couches de sol. Pour les structures et les profils de sol sélectionnés dans ce travail, les simulations numériques réalisées montrent que le décalage de la fréquence fondamentale n'est pas un bon indicateur pour distinguer le comportement linéaire du sol du comportement non linéaire / The interaction of the soil with the structure has been largely explored the assumption of material and geometrical linearity of the soil. Nevertheless, for moderate or strong seismic events, the maximum shear strain can easily reach the elastic limit of the soil behavior. Considering soil-structure interaction, the nonlinear effects may change the soil stiffness at the base of the structure and therefore energy dissipation into the soil. Consequently, ignoring the nonlinear characteristics of the dynamic soil-structure interaction (DSSI) this phenomenon could lead toerroneous predictions of structural response. The goal of this work is to implement a fully nonlinear constitutive model for soils into anumerical code in order to investigate the effect of soil nonlinearity on dynamic soil structureinteraction. Moreover, different issues are taken into account such as the effect of confining stress on the shear modulus of the soil, initial static condition, contact elements in the soil-structure interface, etc. During this work, a simple absorbing layer method based on a Rayleigh / Caughey damping formulation, which is often already available in existing. Finite Element softwares, is also presented. The stability conditions of the wave propagation problems are studied and it is shown that the linear and nonlinear behavior are very different when dealing with numerical dispersion. It is shown that the 10 points per wavelength rule, recommended in the literature for the elastic media is not sufficient for the nonlinear case. The implemented model is first numerically verified by comparing the results with other known numerical codes. Afterward, a parametric study is carried out for different types of structures and various soil profiles to characterize nonlinear effects. Different features of the DSSI are compared to the linear case : modification of the amplitude and frequency content of the waves propagated into the soil, fundamental frequency, energy dissipation in the soil and the response of the soil-structure system. Through these parametric studies we show that depending on the soil properties, frequency content of the soil response could change significantly due to the soil nonlinearity. The peaks of the transfer function between free field and outcropping responsesshift to lower frequencies and amplification happens at this frequency range. Amplificationreduction for the high frequencies and even deamplication may happen for high level inputmotions. These changes influence the structural response.We show that depending on the combination of the fundamental frequency of the structureand the the natural frequency of the soil, the effect of soil-structure interaction could be significant or negligible. However, the effect of structure weight and rocking of the superstructurecould change the results. Finally, the basin of Nice is used as an example of wave propagation ona heterogeneous nonlinear media and dynamic soil-structure interaction. The basin response isstrongly dependent on the combination of soil nonlinearity, topographic effects and impedancecontrast between soil layers. For the selected structures and soil profiles of this work, the performed numerical simulations show that the shift of the fundamental frequency is not a goodindex to discriminate linear from nonlinear soil behavior
3

Effets de la pression interstitielle sur la réponse sismique des sols : modélisation numérique 1D/ 3 composantes / Effects of pore water pressure on the seismic response of soils : 1D/3 components modeling

Pham, Viet Anh 29 November 2013 (has links)
Lors de séismes forts, la propagation des ondes sismiques dans les sols met en jeu des non linéarités de comportement qui se manifestent différemment selon le niveau de sollicitation. En effet, pour de faibles déformations (généralement <10^{-6}), une loi de comportement linéaire (i.e. module et amortissement indépendants du niveau de sollicitation) permet de reproduire les observations expérimentales sur site. En revanche, pour des déformations plus élevées, une loi de comportement non linéaire hystérétique est nécessaire pour décrire l'évolution de la rigidité et des dissipations énergétiques au cours de la sollicitation sismique. De plus, comme les séismes forts sont caractérisés par des amplitudes et des durées plus importantes, le rôle de la pression interstitielle ne peut pas être négligé pour les sols saturés sous fortes sollicitations (mobilité cyclique et liquéfaction). Ces phénomènes peuvent conduire à l'annulation des contraintes effectives et devenir cause de dommages sévères pour les structures et les ouvrages. L'analyse proposée élargit l'applicabilité des modèles de calcul actuels pour une analyse plus fine du risque sismique. En partant d'une formulation aux éléments finis décrivant la propagation des ondes sismiques suivant la direction verticale en prenant en compte le chargement en 3D (l'approche « 1D-3C» : une direction-trois composantes) dans les sols nonlinéaires secs, de nouvelles stratégies pour la prise en compte du rôle de l'eau sont développées. Le modèle de comportement est basé sur la relation entre la pression interstitielle et le travail de la contrainte de cisaillement. Ce modèle décrivant l'évolution de la pression interstitielle considère l'état de contrainte tridimensionnel du matériau. Le modèle est validé par comparaison avec des résultats expérimentaux. L'approche « 1D-3C » a été utilisée pour modéliser la réponse des sols pour 4 séismes réels : le séisme de Superstition Hills en 1987 aux États-Unis (M_{w}=6.7); le séisme de Tohoku en 2011 au Japon (M_{w}=9.1 ); le séisme de Kushiro en 1993 au Japon (M_{w}=7.8) et le séisme d'Emilie Romagne en 2012 en Italie (M_{w}=5.9). Pour les trois premiers séismes, des enregistrements en profondeur et en surface sont disponibles. L'étude de ces trois premiers cas rend possible la validation du modèle par comparaison des données enregistrées et calculées. Le modèle peut donc être considéré comme un outil fiable pour la prédiction de la réponse sismique des sols saturés / During strong earthquakes, the seismic wave propagation in soils involves nonlinear behaviors strongly depending on the strain level. Indeed, for small strain (typically <10^{-6}), a linear constitutive law (modulus and damping independent on the load level) can reproduce the experimental observations on site. However, for larger strains, a nonlinear hysteretic constitutive law is needed to describe the evolution of stiffness and energy dissipation during seismic loading. In addition, as strong earthquakes are characterized by larger amplitudes and durations, the role of pore pressure cannot be neglected for saturated soils. Indeed pore water pressure controls phenomena such as cyclic mobility and liquefaction due to the loss of soil strength. This can lead to a fast decrease of effective stresses and permanent deformations in the soil causing severe damage to structures. This work extends the applicability of existing calculation models for a more detailed analysis of seismic risk. Starting from a FEM approach describing the propagation of seismic waves in the vertical direction, taking into account 3D loading (so-called "1D-3C" approach: 1 direction - 3 components) in nonlinear dry soils, new strategies to consider the role of water are developed. The model is based on the relationship between the pore pressure and the shear work. The three-dimensional stress state of the material is considered. The model is validated by comparison with experimental results. The "1D-3C" approach was used to model the response of soils for four real earthquakes: the Superstition Hills earthquake in 1987 in the United States (M_{w}=6.7), the Tohoku earthquake in 2011 in Japan (M_{w}=9.1), the Kushiro earthquake in Japan in 1993 (M_{w}=7.8) and the Emilia Romagna earthquake in Italy in 2012 (M_{w}=5.9). For the first three earthquakes, records at depth and on the surface are available. The study of the first three cases makes possible the validation of the model by comparing the calculated accelerations on the surface with the available records. The model can then be considered as an advanced tool for the prediction of the seismic soil response

Page generated in 0.0835 seconds