• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Insects attacking ground cherry (Physalis Spp.) Solanaceae

McGee, William Harry. January 1948 (has links)
Call number: LD2668 .T4 1948 M33 / Master of Science
2

Characterization of potato virus Y (PVY) isolates infecting solanaceous vegetables in KwaZulu-Natal (KZN), Republic of South Africa (RSA)

Ibaba, Jacques Davy. January 2009 (has links)
Potato virus Y (PVY) is an economically important virus worldwide. In South Africa, PVY has been shown to be a major limiting factor in the production of important solanaceous crops, including potato (Solanum tuberosum L.), pepper (Capsicum annuum L.), tomato (Lycopersicon esculentum Mill.) and tobacco (Nicotiana spp). The variability that PVY displays, wherever the virus occurs, merits the study of the isolates occurring in KwaZulu-Natal (KZN) in the Republic of South Africa (RSA). This characterization will provide a clear understanding of strains/isolates from local vegetables and how they relate to the other PVY strains already identified, as well as information that can be used to manage the diseases they cause. Hence, the aim of this project was to study the biological and genetic properties of PVY isolates infecting potato, tomato and pepper in KZN. Enzyme-linked immunosorbent assay (ELISA) using monoclonal antibodies and reverse transcription polymerase chain reaction (RT-PCR) using primers specific to all PVY strains were used to detect the virus in plant material showing PVY-like symptoms collected from various locations in KZN. A total of 39 isolates (18 isolates infecting tomato, 12 infecting potato and 9 infecting pepper) were further differentiated into strains by means of ELISA using strain specific antibodies and RT-PCR using primers specific to the different strains of PVY identified around the world. All PVY isolates infecting tomato and pepper tested positive for the ordinary PVYO strain with both ELISA and RT-PCR. PVY isolates infecting potato were more diverse and comprised the PVYN, PVYNTN and PVYNWilga strains, with mixed infections noted in some cases. The biological properties were studied by mechanically inoculating Chenopodium quinoa, Nicotiana tabacum cv Xanthi, N. tabacum cv Samsun, N. glutinosa, and N. rustica with leaf extracts from plants infected with the different PVY strains detected in this study. All inoculated C. quinoa plants did not show symptoms. All tobacco plants showing symptoms were tested for the presence of PVY by means of ELISA using monoclonal antibodies targeting all strains and electron microscopy using the leaf dip technique. Not all the inoculated tobacco tested positive with ELISA. The symptoms observed were therefore divided into PVY-related and PVY non- related. PVY-related symptoms included vein clearing, mosaic chlorosis, stunting, and vein necrosis. PVY non-related symptoms included wrinkles and leaf distortions. Potyvirus-like particles of about 700 nm were observed under the transmission electron microscope (TEM) from plants showing PVY-related symptoms while rod shaped viral particles of sizes varying between 70 and 400 nm were observed from plants showing non-PVY related symptoms. A portion of the virus genome (1067 bp) covering part of the coat protein gene and the 3’ non-translated region (NTR) of three PVYO isolates infecting tomato, one PVYO isolate infecting pepper and one PVYNWilga isolate infecting potato were amplified, cloned and sequenced. The 5’ NTR, P1, HC-Pro and part of P3 regions (2559 bp) of a PVYN isolate infecting potato were also amplified, cloned and sequenced. Sequence data was compared with selected PVY sequences from different geographical locations around the world. These were available on the NCBI website and subsequently used for phylogenic analyses. The sequenced genomic regions of the PVYN isolate were found to be 99% similar to the New Zealand PVYN isolate (GenBank accession number: AM268435), the Swiss PVYN isolate CH605 (X97895) and the American PVYN isolate Mont (AY884983). Moreover, the deduced amino acid sequence comparison of the genomic regions of the PVYN isolate revealed the presence of five distinct amino acids residues. The three amino acid residues (D205, K400, and E419), which determine the vein necrosis phenotype in tobacco, were also identified. The coat protein and 3’ NTR sequences of all KZN PVYO isolates infecting pepper and tomato were closely similar to each other than to KZN PVYNWilga isolate infecting potato. The phylogenic analysis clustered the KZN PVYN isolate with the European sublineage N, PVYNWilga isolate infecting potato with the American PVYO isolate Oz (EF026074) in the O lineage and all PVYO isolates infecting tomato and pepper in a new sublineage within the O lineage. Taken together, these results point to the presence of PVY in solanaceous vegetables cultivated in KZN and they lay the foundation for the formulation of effective control measure against PVY diseases in KZN. / Thesis (M.Sc.) - University of KwaZulu-Natal, Pietermaritzburg, 2009.
3

Composition and phenology of insect pests of Capsicum (Solanaceae) cultivated in the Makana District, Eastern Cape Province, South Africa

Hepburn, Colleen January 2008 (has links)
Capsicum baccatum var. pendulum was first grown in the Makana District in 2005. Extremely little was known about best practices for cultivation or the insects and diseases associated with the crop in this area. The study was conducted during the second year of production, November 2005 and November 2006, in an attempt to identify the composition and phenology of insects occurring on C. baccatum. In the more rural parts of the Eastern Cape, and more particularly in Grahamstown, there are very few industries. With the advent of this new agricultural venture, a processing factory has been opened in Grahamstown creating more than 600 seasonal jobs in the factory and 1000 seasonal jobs on farms for local people. This business enterprise has not only brought about the creation of jobs, but also training and skills development and empowerment, generating much-needed income in this area. An extensive literature review yielded limited information on insect pests associated with Capsicum. Data from a pilot sampling trial undertaken were statistically analyzed to establish the number of plants to be scouted per site and the most effective scouting techniques to use. Based on the data available and insects collected during the pilot sampling trial, a surveillance programme was designed. Five different types of monitoring traps were placed in each of the eight study sites. Collection of trap catches and scouting of fifteen individual plants per site was undertaken on a weekly basis over the 52-week study period. The most commonly occurring potential insect pests were African Bollworm Helicoverpa armigera (Hübner), False Codling Moth Thaumatotibia leucotreta (= Cryptophlebia leucotreta) (Meyrick), Mediterranean Fruit Fly Ceratitis capitata (Wiedemann) and several species of thrips. Population densities of these pests and their phenology on Capsicum were determined. Statistical analyses established the efficacy of the monitoring traps for each pest, tested for differences among and between study sites, calculated an estimate of the number of pods damaged and a measure of plant damage.The results show that the majority of damage caused to the Capsicum baccatum cropping system was due to Mediterranean Fruit Fly populations. It was established that, although African Bollworm and False Codling Moth were present during the study period, their numbers were negligible and only nominal damage was caused by these pests. Damage caused by thrips species was apparent but not quantifiable. Intervention strategies using an Integrated Pest Management approach, are discussed.

Page generated in 0.097 seconds