• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 349
  • 50
  • 45
  • 45
  • 42
  • 28
  • 17
  • 13
  • 13
  • 10
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 694
  • 694
  • 121
  • 116
  • 99
  • 86
  • 82
  • 81
  • 75
  • 75
  • 65
  • 65
  • 62
  • 60
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Solution-Processed Molecular Organic Solar cell: Relationship between Morphology and Device Performance

Babics, Maxime 09 May 2018 (has links)
In the last decade, organic photovoltaics (OPV) have gained considerable attention with a rapid improvement of power conversion efficiency (PCE) from 5% to more than 13%. At the origin of the gradual efficiency improvements are (i) the rationalization of material design and (ii) systematic optimization of film processing condition. OPV can have a key role in markets such as building-integrated photovoltaics (BIPV). The main advantages of organic solar cells are semitransparency, low weight, good performance at low light intensity, flexibility and potential low-cost module manufacture through solution processed-based technologies. In solution processed OPV, the active layer that converts photons into electric charges is a composite of two organic compounds, a donor (D) and an acceptor (A) where the best morphology is achieved via the so-called bulk heterojunction (BHJ): an interpenetrating phase-separated D-A network. Historically, research has been focused on polymer donors and guidelines about morphology and film processing have been established. However recent studies have shown that small-molecule (SM) donors can rival their polymer counterparts in performance. The advantages of SM are a defined molecular weight, the ease of purification and a good batch-to-batch reproducibility. Using this class of material the existing guidelines have to be adjusted and refined. In this dissertation, using new SM synthesized in our laboratory, solution-processed organic solar cells are fabricated in which the morphology of the active layer is controlled by thermal annealing, the use of additive or solvent vapor annealing. In-depth analyses of the morphology are correlated to charge generation, recombination and extraction inferred from device physics. In the first part of the dissertation, using a small amount of 1,8-Diiodooctane additive that acts as a plasticizer, it is found that the D-A domains do not necessarily need to be pure and that mixed domains can also result in high performing devices. In the second part of the dissertation, the effect of solvent vapor annealing, particularly effective for SM:PCBM BHJ, is discussed where excellent control of the morphology is achieved. In the last part of the dissertation, efficient organic solar cells with open circuit voltage of >1.05V are made via fine-tuning of the morphology.
52

Investigation of Non-Vacuum Deposition Techniques in Fabrication of Chalcogenide-Based Solar Cell Absorbers

Alsaggaf, Ahmed 07 1900 (has links)
The environmental challenges are increasing, and so is the need for renewable energy. For photovoltaic applications, thin film Cu(In,Ga)(S,Se)2 (CIGS) and CuIn(S,Se)2 (CIS) solar cells are attractive with conversion efficiencies of more than 20%. However, the high-efficiency cells are fabricated using vacuum technologies such as sputtering or thermal co-evaporation, which are very costly and unfeasible at industrial level. The fabrication involves the uses of highly toxic gases such as H2Se, adding complexity to the fabrication process. The work described here focused on non-vacuum deposition methods such as printing. Special attention has been given to printing designed in a moving Roll-to-Roll (R2R) fashion. The results show potential of such technology to replace the vacuum processes. Conversion efficiencies for such non-vacuum deposition of Cu(In,Ga)(S,Se)2 solar cells have exceeded 15% using hazardous chemicals such as hydrazine, which is unsuitable for industrial scale up. In an effort to simplify the process, non-toxic suspensions of Cu(In,Ga)S2 molecular-based precursors achieved efficiencies of ~7-15%. Attempts to further simplify the selenization step, deposition of CuIn(S,Se)2 particulate solutions without the Ga doping and non-toxic suspensions of Cu(In,Ga)Se2 quaternary precursors achieved efficiencies (~1-8%). The contribution of this research was to provide a new method to monitor printed structures through spectral-domain optical coherence tomography SD-OCT in a moving fashion simulating R2R process design at speeds up to 1.05 m/min. The research clarified morphological and compositional impacts of Nd:YAG laser heat-treatment on Cu(In,Ga)Se2 absorber layer to simplify the annealing step in non-vacuum environment compatible to R2R. Finally, the research further simplified development methods for CIGS solar cells based on suspensions of quaternary Cu(In,Ga)Se2 precursors and ternary CuInS2 precursors. The methods consisted of post deposition reactive annealing for performance enhancement up to 2.0% solar cell conversion efficiency. Chemical treatment using metal salt solutions and Na2Se4 for Na and Se incorporation provided efficiencies up to 1.1%.
53

The Excited State Properties of Dirhodium (II,II) Complexes: Application for Solar Energy Conversion

Xue, Congcong January 2019 (has links)
No description available.
54

High Efficiency Solar Cell Panel

Liikala, Richard 06 1900 (has links)
<p> Solar Cells of at least 10% conversion efficiency were fabricated from silicon wafers of one inch diameter and the same processing procedure was applied to wafers of three inch diameter. Four of the three inch diameter solar cells were affixed to a galvanized steel plate and hooked in a parallel configuration to make a solar cell panel. A piece of special plastic was placed over the solar cells on the panel and hermetically sealed to protect the solar cells from the environment which in time would degrade the performance of the solar cells. </p> / Thesis / Master of Engineering (MEngr)
55

Preparation and Characterization of Evaporated Cds Films

Vanderwel, Theodore 04 1900 (has links)
<p> As part of a CdS-cu2s thin film solar cell research project, a CdS evaporation system was designed and built using an Edwards 19E6 coating unit. With the overall aims of the project in mind, the apparatus was designed as part of a CdS-Cu2s dual, in situ, evaporation system. CdS films, ranging in thickness from lμ to 25μ, produced by this system, were characterized optically, electrically and crystallographically as functions of the various evaporation parameters. </p> / Thesis / Master of Engineering (MEngr)
56

Carbazole-Fluorenone Dyes

Leontyev, Alexey E. 31 July 2009 (has links)
No description available.
57

Synthesis of a Fullerene Acceptor with Visible Absorption for Polymer Solar Cells

Han, Lu 05 June 2014 (has links)
No description available.
58

Optoelectronic and Defect Properties in Earth Abundant Photovoltaic Materials: First-principle Calculations

Shi, Tingting January 2014 (has links)
No description available.
59

Sputter Deposition of Iron Oxide and Tin Oxide Based Films and the Fabrication of Metal Alloy Based Electrodes for Solar Hydrogen Production

Sporar, Daniel 03 July 2007 (has links)
No description available.
60

Flexible Crystalline Silicon Solar Cell

Zhang, Wei 01 1900 (has links)
<p>A new type of flexible silicon solar cell has been fabricated by interconnecting solar cell die on a flexible substrate. The fabrication process is described in this thesis. The solar cell die were diced using two methods. One method was to dice a solar cell completely through. The other method was to dice a solar cell from its back partially and then cleave through. To study the effects of different dicing methods on the performance of solar cell die, storage delay time measurement was employed to determine the lifetime of excess electrons in the p region of the two types of solar cell die. A laser beam induced current (LBIC) scanning technique was employed to study the electrical performance of the two types of solar cell die. The carrier diffusion lengths of two types of solar cell die were also determined by traveling light spot diffusion length measurement.</p><p>The theoretical response of a solar cell was compared to experimental results at various incident light angles. OpticLab software was used to model the incident light angle and lens spacing dependence of solar cell performance.</p> / Thesis / Master of Applied Science (MASc)

Page generated in 0.0349 seconds