• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 12
  • 8
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermal Performance Comparison of Three Integrated Thermal Solar Roof Collectors

Xu, Zheng 29 December 2004 (has links)
The integrated solar roof collector system can bring the house year-round energy saving benefit. In heating season, part of the space heating and preheating domestic hot water demand can be met by this integrated system. In the cooling season, cooling load reduction and preheating domestic hot water can be achieved by operating this system. The traditional solar thermal system is an add-on system rather than integrated, which increases the cost-benefit ratio. The current system is integrated with the roof structure. Except for the energy collecting benefit, it will reduce the material cost, labor cost and construction period. The objectives of this research is to estimate the energy performance of three collector configurations including space heating saving, and preheat hot water saving. This study also compares energy performance for the three collectors on two types of evaluated houses in Roanoke, Virginia. / Master of Science
2

Thermo-economic Analysis of Retrofitting an Existing Coal-Fired Power Plant with Solar Heat

Shimeles, Surafel January 2014 (has links)
At a time when global environmental change is posing a growing challenge to the world’s economy and creating uncertainties to livelihood of its inhabitants, Coal thermal power plants are under pressure to meet stringent environmental regulations into achieving worldwide set millennial goals for mitigating the effect of emission gases on the atmosphere. Owing to its abundance, it is unlikely to see the use of coal completely missing from the global energy mix within the next hundred years to come. While innovative emission reduction technologies are evolving for the better, trendy technological solutions which require reintegration of these coal plants with alternative greener fuels are growing at the moment. Among these solutions, the following paper investigates possible means for repowering a coal steam power plant with indirect solar heating solutions to boost its annual outputs. Two widely deployable solar thermal technologies, parabolic trough and Central tower receiver systems, are introduced at different locations in the steam plant to heat working fluid thereby enhancing the thermodynamic quality of steam being generated. Potential annual energy output was estimated using commercially available TRNSYS software upon mass and heat balance to every component of solar and steam plant. The annual energy outputs are weighed against their plant erecting and running costs to evaluate the economic vitality of the proposed repowering options. The results show that parabolic trough heating method could serve as the most cost effective method generating electricity at competitive prices than solar only powered SEGS plants. While cost may be acceptable in the unit of energy sense, the scale of implementation has been proven to be technically limited. / Kriel Power Plant
3

A Study of Latent Heat of Vaporization in Aqueous Nanofluids

January 2015 (has links)
abstract: Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there are still examples of unanticipated enhancements to some properties, such as the reported specific heat of molten salt-based nanofluids and the critical heat flux. Another largely overlooked example is the apparent effect of nanoparticles on the effective latent heat of vaporization (hfg) of aqueous nanofluids. A previous study focused on molecular dynamics (MD) modeling supplemented with limited experimental data to suggest that hfg increases with increasing nanoparticle concentration. Here, this research extends that exploratory work in an effort to determine if hfg of aqueous nanofluids can be manipulated, i.e., increased or decreased, by the addition of graphite or silver nanoparticles. Our results to date indicate that hfg can be substantially impacted, by up to ± 30% depending on the type of nanoparticle. Moreover, this dissertation reports further experiments with changing surface area based on volume fraction (0.005% to 2%) and various nanoparticle sizes to investigate the mechanisms for hfg modification in aqueous graphite and silver nanofluids. This research also investigates thermophysical properties, i.e., density and surface tension in aqueous nanofluids to support the experimental results of hfg based on the Clausius - Clapeyron equation. This theoretical investigation agrees well with the experimental results. Furthermore, this research investigates the hfg change of aqueous nanofluids with nanoscale studies in terms of melting of silver nanoparticles and hydrophobic interactions of graphite nanofluid. As a result, the entropy change due to those mechanisms could be a main cause of the changes of hfg in silver and graphite nanofluids. Finally, applying the latent heat results of graphite and silver nanofluids to an actual solar thermal system to identify enhanced performance with a Rankine cycle is suggested to show that the tunable latent heat of vaporization in nanofluilds could be beneficial for real-world solar thermal applications with improved efficiency. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2015
4

Energetický posudek solární soustavy / Energy Assessment of Solar System

Šmardová, Eva January 2018 (has links)
The first part of diploma thesis describes how to measure the parameters of solar thermal collector and solar thermal system. The computational part analyzes heat consumption in the evaluated building and describes design of the solar thermal system for domestic hot water. Last part focuses on the energy assessment of the designed solar system above and evaluation of the solar system, which is located at the Faculty of Civil Engineering in BUT.
5

Solar process heat in the food industry : methodological analysis and design of a sustainable process heat supply system in a brewery and a dairy

Müller, Holger January 2016 (has links)
The food industry is a large consumer of industrial energy. A very large portion of this energy is needed in the form of thermal energy at medium to low temperatures. Fossil fuels remain the dominant sources of this energy. This combination provides various possibilities to reduce energy consumption and CO2 emissions with heat recovery, but also with the integration of solar process heat. Energy efficiency must provide the context, or background, of such considerations, and is therefore a very important aspect of them. It is a complex task to design an efficient heat supply with a variety of energy sources. An analysis of standards for energy audits, guides for energy efficiency and guides for solar process heat integration confirms that complexity. However, no available methodology considers all the necessary steps. These must range from analysis of the existing heat supply to the redesign of an efficient heat supply system. The focus must be on heat sources with waste heat and on solar process heat that might be used to complement the conventional sources. The design of a process heat system is mainly the task of design engineers in engineering offices. Specific tools and measures are needed to support these experts. However, the companies of the food industry sector employ their own energy engineers for energy issues. These people are actually the decision makers responsible for the configuration of the company energy supply systems, who also possess knowledge of the processes in their industry subsector. The expertise of the energy engineers varies within a broad range and is also connected to their area of responsibility. Therefore, it is important to consider these energy engineers when developing a methodology. The development of the methodology proposed herein consists first of the configuration of the tools and measures, which were assigned to four elements and functions. Second, the methodology so developed was applied at two companies in cooperation with their energy engineers, in detailed case studies. The feedback from the energy engineers is therefore a main objective and provides a background for evaluation of the usability of the methodology. It demonstrates the expertise required of the energy engineers, for the application of the tools and measures provided. Moreover, the development and application of the methodology involving real companies demonstrates the necessity of getting feedback from energy engineers. That finding is very important, and has been insufficiently considered in previous guides or methodologies. It is proposed that further work be aimed at providing additional case studies to extend the use of this methodology to other parts of the food industry.
6

Desempenho de sistemas de condicionamento de ar com utilização de energia solar em edifícios de escritórios. / Performance of solar air conditioning systems in office buildings.

Ara, Paulo José Schiavon 14 December 2010 (has links)
A preocupação energética tem impulsionado a humanidade a buscar alternativas sustentáveis de energia. Neste contexto, os edifícios de escritórios têm um papel importante, em especial, devido ao elevado consumo de energia dos sistemas de condicionamento de ar. Para esses sistemas, a possibilidade de utilização de energia solar é uma alternativa tecnicamente possível e interessante de ser considerada, principalmente porque, quando a carga térmica do edifício é mais elevada, a radiação solar também é mais elevada. Dentre os sistemas de condicionamento de ar solar, o sistema térmico - que associa coletores solares térmicos com chiller de absorção - é o mais disseminado, na atualidade. Entretanto, dependendo do caso, outras tecnologias podem ser vantajosas. Uma opção, por exemplo, no caso de edifícios de escritórios, é o sistema elétrico - que associa painéis fotovoltaicos ao chiller convencional de compressão de vapor. Neste trabalho, para um edifício de escritórios de 20 pavimentos e 1000 m2 por pavimento, na cidade de São Paulo, no Brasil, duas alternativas de ar condicionado solar tiveram seus desempenhos energéticos analisados: o sistema térmico - com coletores solares térmicos somente na cobertura e o sistema elétrico - com painéis FV somente nas superfícies opacas das fachadas. Para isso, com o software EnergyPlus do Departamento de Energia dos Estados Unidos obteve-se as carga térmica atuantes no edifício e com a aplicação do método de cálculo de consumo de energia dos sistemas de ar condicionado solar, proposto pelo Projeto SOLAIR da União Européia, adaptado para a realidade da pesquisa, obteve-se o desempenho energético dos sistemas. Os resultados mostraram que, para o edifício de 20 pavimentos, o sistema elétrico tem o melhor desempenho energético, economizando 28% e 71% da energia elétrica que consumiria um sistema de ar condicionado convencional, em um dia de verão e de inverno, respectivamente. O sistema térmico, ao contrário, apresentou um desempenho energético ruim para o edifício estudado, consumindo, por exemplo, em um dia de verão, cerca de 4 vezes mais energia elétrica do que um sistema de ar condicionado convencional. Constatouse que isso ocorreu, pois a área coletora limitada à cobertura foi insuficiente para atender a demanda do chiller de absorção, que passou a operar com frações solares baixas, da ordem de 50% e 20%, de pico, no dia de inverno e de verão, respectivamente. Assim, constatou-se que para que o sistema térmico apresente um desempenho energético satisfatório é preciso que o edifício não seja tão alto. De fato, os resultados mostraram que somente se o edifício tivesse no máximo 2 pavimentos, o sistema térmico teria um desempenho energético melhor do que um sistema convencional. No caso de ser aplicado ao edifício térreo de 1000m2 de área, por exemplo, esse sistema economizaria aproximadamente 65% da energia elétrica do sistema convencional. Por fim, constatou-se também que o desempenho energético do sistema térmico seria elevado com a otimização da área e da tecnologia de coletores solares, com o aprimoramento do sistema de aquecimento auxiliar e com a redução da carga térmica do edifício por meio de técnicas passivas de climatização. / Energy concern has driven human kind to seek sustainable energy alternatives. In this context, office buildings have an important role, especially due to the high energy consumption of air conditioning systems. For these systems, the possibility of using solar energy is technically feasible and interesting to be considered, mainly because generally when the building thermal load is higher, the solar radiation is also higher. Among solar airconditioning systems, the thermal system - which combines solar collectors with absorption chiller - is the most widespread, nowadays. However, depending on the case, other technologies may take advantage. One option, for example, in the case of office buildings, is the electrical system - which combines photovoltaic panels with conventional vapor compression chiller. In this work, an office building of 20 floors with 1,000 m2 floor area, in Sao Paulo, Brazil, two technologies of solar air conditioning had their performance analyzed: the thermal system - presenting solar thermal collectors only on the roof and the electrical system with PV panels only on the opaque surfaces of the facades. For this, the software EnergyPlus of the United States Department of Energy obtained the building thermal load and the with the solar air conditioning energy consumption calculating method proposed by SOLAIR project of the European Union and adapted to this work, energy performance of systems was obtained. The results showed that for this building, the electrical system had the best energy performance, saving 28% and 71% of electricity that would consume a conventional air conditioning system in a summer day and a winter day, respectively. The thermal system, in contrast, showed a poor energy performance, consuming, for example, on a summer day, about four times more electricity than a conventional air conditioning system. It was found that this occurred because the collectors area limited to the roof of the building was insufficient to meet the absorption chiller demand, causing low solar fractions in the operation, of around 50% and 20% peak, in a winter day and in a summer day, respectively. Thus, in order of provide a satisfactory energy performance, the thermal system requires that the building not to be so tall. In fact, the results showed that only if the building had up to two floors, the system would perform better than a conventional system. In case of be installed in a building with the ground floor only, and floor area of 1000m2, for example, this system would save about 65% of the electricity comparing to a conventional system. Finally, it was found that this energy performance would be elevated as well with the optimization of solar collectors area and technology, with auxiliary heating system improvement and with the reduction of thermal load of the building by means of passive air conditioning techniques.
7

Desempenho de sistemas de condicionamento de ar com utilização de energia solar em edifícios de escritórios. / Performance of solar air conditioning systems in office buildings.

Paulo José Schiavon Ara 14 December 2010 (has links)
A preocupação energética tem impulsionado a humanidade a buscar alternativas sustentáveis de energia. Neste contexto, os edifícios de escritórios têm um papel importante, em especial, devido ao elevado consumo de energia dos sistemas de condicionamento de ar. Para esses sistemas, a possibilidade de utilização de energia solar é uma alternativa tecnicamente possível e interessante de ser considerada, principalmente porque, quando a carga térmica do edifício é mais elevada, a radiação solar também é mais elevada. Dentre os sistemas de condicionamento de ar solar, o sistema térmico - que associa coletores solares térmicos com chiller de absorção - é o mais disseminado, na atualidade. Entretanto, dependendo do caso, outras tecnologias podem ser vantajosas. Uma opção, por exemplo, no caso de edifícios de escritórios, é o sistema elétrico - que associa painéis fotovoltaicos ao chiller convencional de compressão de vapor. Neste trabalho, para um edifício de escritórios de 20 pavimentos e 1000 m2 por pavimento, na cidade de São Paulo, no Brasil, duas alternativas de ar condicionado solar tiveram seus desempenhos energéticos analisados: o sistema térmico - com coletores solares térmicos somente na cobertura e o sistema elétrico - com painéis FV somente nas superfícies opacas das fachadas. Para isso, com o software EnergyPlus do Departamento de Energia dos Estados Unidos obteve-se as carga térmica atuantes no edifício e com a aplicação do método de cálculo de consumo de energia dos sistemas de ar condicionado solar, proposto pelo Projeto SOLAIR da União Européia, adaptado para a realidade da pesquisa, obteve-se o desempenho energético dos sistemas. Os resultados mostraram que, para o edifício de 20 pavimentos, o sistema elétrico tem o melhor desempenho energético, economizando 28% e 71% da energia elétrica que consumiria um sistema de ar condicionado convencional, em um dia de verão e de inverno, respectivamente. O sistema térmico, ao contrário, apresentou um desempenho energético ruim para o edifício estudado, consumindo, por exemplo, em um dia de verão, cerca de 4 vezes mais energia elétrica do que um sistema de ar condicionado convencional. Constatouse que isso ocorreu, pois a área coletora limitada à cobertura foi insuficiente para atender a demanda do chiller de absorção, que passou a operar com frações solares baixas, da ordem de 50% e 20%, de pico, no dia de inverno e de verão, respectivamente. Assim, constatou-se que para que o sistema térmico apresente um desempenho energético satisfatório é preciso que o edifício não seja tão alto. De fato, os resultados mostraram que somente se o edifício tivesse no máximo 2 pavimentos, o sistema térmico teria um desempenho energético melhor do que um sistema convencional. No caso de ser aplicado ao edifício térreo de 1000m2 de área, por exemplo, esse sistema economizaria aproximadamente 65% da energia elétrica do sistema convencional. Por fim, constatou-se também que o desempenho energético do sistema térmico seria elevado com a otimização da área e da tecnologia de coletores solares, com o aprimoramento do sistema de aquecimento auxiliar e com a redução da carga térmica do edifício por meio de técnicas passivas de climatização. / Energy concern has driven human kind to seek sustainable energy alternatives. In this context, office buildings have an important role, especially due to the high energy consumption of air conditioning systems. For these systems, the possibility of using solar energy is technically feasible and interesting to be considered, mainly because generally when the building thermal load is higher, the solar radiation is also higher. Among solar airconditioning systems, the thermal system - which combines solar collectors with absorption chiller - is the most widespread, nowadays. However, depending on the case, other technologies may take advantage. One option, for example, in the case of office buildings, is the electrical system - which combines photovoltaic panels with conventional vapor compression chiller. In this work, an office building of 20 floors with 1,000 m2 floor area, in Sao Paulo, Brazil, two technologies of solar air conditioning had their performance analyzed: the thermal system - presenting solar thermal collectors only on the roof and the electrical system with PV panels only on the opaque surfaces of the facades. For this, the software EnergyPlus of the United States Department of Energy obtained the building thermal load and the with the solar air conditioning energy consumption calculating method proposed by SOLAIR project of the European Union and adapted to this work, energy performance of systems was obtained. The results showed that for this building, the electrical system had the best energy performance, saving 28% and 71% of electricity that would consume a conventional air conditioning system in a summer day and a winter day, respectively. The thermal system, in contrast, showed a poor energy performance, consuming, for example, on a summer day, about four times more electricity than a conventional air conditioning system. It was found that this occurred because the collectors area limited to the roof of the building was insufficient to meet the absorption chiller demand, causing low solar fractions in the operation, of around 50% and 20% peak, in a winter day and in a summer day, respectively. Thus, in order of provide a satisfactory energy performance, the thermal system requires that the building not to be so tall. In fact, the results showed that only if the building had up to two floors, the system would perform better than a conventional system. In case of be installed in a building with the ground floor only, and floor area of 1000m2, for example, this system would save about 65% of the electricity comparing to a conventional system. Finally, it was found that this energy performance would be elevated as well with the optimization of solar collectors area and technology, with auxiliary heating system improvement and with the reduction of thermal load of the building by means of passive air conditioning techniques.
8

Energetický audit / Energy Audit

Hrazdira, David January 2018 (has links)
The theme of this master's thesis is the elaborating of an energy audit according to the valid legislation in the Czech Republic a five-storey apartment building. The master's thesis consists of three main parts. Theoretical, Computional and Energy Audit. The theoretical part focuses on the theme of solar thermal collectors. In the calculation part, the energy consumption of the assessed object is analyzed in both the initial and the new state. The energy audit is drawn up in accordance the Decree number 480/2012 Sb. in the current version.
9

Efektivní pokrytí potřeby tepla s pomocí solární soustavy / The effective coverage of the heat demand using solar system

Vítek, Lukáš Unknown Date (has links)
This master thesis aims to design the heating system and HDW preparation in an apartment building. The first variant deals with condensation gas boiler as the only energy source, while the second variant combines the gas boilers with the solar thermal system. The apartment building is located in Prag and has three above-ground floors and a basement. In the basement is the technical room. Convectors are being used for heat distribution. The theoretical part deals with the introduction to the solar thermal system.
10

Měření a regulace počítačem řízených solárních systémů: Vizualizace energetických systémů / Measuring and regulation of computer controlled solar systems: Vizualization of energetic systems

Vlčnovská Kotlíková, Silvie January 2008 (has links)
This work is oriented on study and evaluation of performance of real operating solar system. There was made analysis of actual technological unit and there was suggested mode of measuring of nodal parameters. There was made interconnection between the head operating unit of the solar system and the web server. And there was prepared software for grafical image of time and temperature dependence and for data transfer to ready web application. It primarily talks about increase of efficiency of real technological unit through regulating of parameter that is using up of accumulated energy.

Page generated in 0.0719 seconds