• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of Solar Thermophotovoltaic (STPV) Energy Conversion with Selective Metafilm Coatings and GaSb Cell Separated by Glass Microspheres

January 2020 (has links)
abstract: Solar energy as a limitless source of energy all around the globe has been difficult to harness. This is due to the low direct solar-electric conversion efficiency which has an upper limit set to the Shockley-Queisser limit. Solar thermophotovoltaics (STPV) is a much more efficient solar energy harvesting technology as it has the potential to overcome the Shockley-Queisser limit, by converting the broad-spectrum solar irradiation into narrowband infrared spectrum radiation matched to the PV cell. Despite the potential to surpass the Shockley-Queisser limit, very few experimental results have reported high system-level efficiency. The objective of the thesis is to study the STPV conversion performance with selective metafilm absorber and emitter paired with a commercial GaSb cell at different solar concentrations. Absorber and Emitter metafilm thickness was optimized and fabricated. The optical properties of fabricated metafilms showed good agreement with the theoretically determined properties. The experimental setup was completed and validated by measuring the heat transfer rate across the test setup and comparing it with theoretical calculations. A novel method for maintaining the gap between the emitter and PV cell was developed using glass microspheres. Theoretical calculations show that the use of the glass of microspheres introduces negligible conduction loss across the gap compared to the radiation heat transfer, which is confirmed by experimental heat transfer measurement. This research work will help enhance the fundamental understanding and the development of the high-efficiency solar thermophotovoltaic system. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2020

Page generated in 0.0485 seconds