• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Growth and Optical Characterization of Zinc Oxide Nanowires for Anti-reflection Coatings for Solar Cells

Coakley, Martha 01 January 2011 (has links)
The optical properties of solar cells greatly affect their efficiencies. Decreasing the broadband and directional reflectance of solar cells increases the solar irradiance transmitted and absorbed by the cell, thereby increasing the production of electron-hole pairs. Traditional optical enhancements such as light trapping and anti-reflection coatings reduce the reflectance of silicon at an optimized wavelength and angle of incidence. They do not perform as well at high angles of incidence or over the broadband solar spectrum. Theoretical studies suggest that layers with a suitable gradient-index of refraction can create both a broadband and directional anti-reflective coating. Through their variations in height and tapered growth, Zinc oxide (ZnO) nanowires can create a gradient index anti-reflection coating. ZnO is a wide-band gap semiconductor that is non-absorbing over most of the solar spectrum. With low cost, low temperature techniques, ZnO nanowires can be grown with a variety of morphologies. ZnO nanowires were grown by aqueous chemical growth and by electrodeposition on silicon to create a gradient-index anti-reflective coating for solar cell applications. The nanowire arrays were characterized using SEM images, goniometer scattering measurements, and integrating sphere total reflectance measurements. ZnO nanowires grown by aqueous chemical growth on silicon had average diameters between 60 nm and 100 nm and average lengths between 800 nm and 1100 nm. The nanowires had vertical alignment. They exhibited relatively small diffuse reflectivities and relatively large specular reflectivities. ZnO nanowires grown by electrodeposition had greater variances in length and diameter, with average diameters between 85 nm and 180 nm and average lengths between 500 nm and 1200 nm. Electrodeposited ZnO nanowires were randomly arrayed and exhibited relatively large diffuse reflectivities and relatively small specular reflectivities. Total reflectance measurements showed that all nanowire arrays reduced the broadband reflectance of silicon. Smaller nanowire arrays outperformed the larger crystal growths. A five-fold decrease in the broadband reflectance of silicon was obtained from both vertical and randomly oriented nanowire arrays. The reflectances were constant for angles of incident below 35°. Measurements at angles of incidence greater than 35° are required to determine whether ZnO nanowires can perform as directional anti-reflective coatings and whether the morphology of the nanowires affects the directional reflectances.
2

XAFS investigation of the local structure of cadmium in Cu(In[subscript 0.7]Ga[subscript 0.3])Se���-based thin films

Ma, Giang N. 10 March 2004 (has links)
We have performed fluorescence extended X-ray absorption fine structure (EXAFS) measurements on the Cd K-edge of partial electrolyte (PE) treated Cu(In[subscript 0.7]Ga[subscript 0.3])Se��� (CIGS) thin film samples using synchrotron X-ray radiation. This data was compared to the EXAFS spectra of CdSe and CdO standards. Cd local structure models were constructed and used for the least square analysis of the spectra. The first model employed implantation of a cadmium atom and a single oxygen atom into the CIGS lattice. Specifically, an oxygen atom was introduced in the tetrahedral bonded Cd-Se local structure. Employing FEFF8 with WinXAS software package, experimental data was theoretically fitted to the first shell single-scattering paths of the Cd atom in the (PE) treated Cu(In[subscript 0.7]Ga[subscript 0.3])Se��� thin film samples. The main peak observed in the data represents the Cd-Se bonds and the shoulder corresponds to the Cd-O bond. However, the number of total nearest neighbors is not consistent with this model. A two-phase model that includes both Cd-Se tetrahedron and Cd-O octahedron were then reconstructed. Again, a least-agrees very well with the experimental data, and the total first nearest neighbor number is consistent with the two phase model at NN=4.2. This study indicates the surface of Cd partial electrolyte treated Cu(In[subscript 0.7]Ga[subscript 0.3])Se��� thin films contains both CdSe and CdO. / Graduation date: 2004

Page generated in 0.1103 seconds