Spelling suggestions: "subject:"solar cellmaterials"" "subject:"solar cellmaterial""
1 |
Novel inorganic material and film formation process for high performance organic solar cellsXie, Fengxian, 解凤贤 January 2013 (has links)
Organic solar cell (OSC) is a highly promising research field with a strong potential to realize low cost solar cells with flexibility and light weight. Although OSC power conversion efficiency (PCE) exceeding 9% has been achieved recently, great efforts are still needed to strive a PCE over 10% making OSC ready for commercialization. Besides the demand of high PCE, other considerations, such as easy solution process, stability and large area processing, are also required for mass production in future.
With the understanding of key technical issues that still challenge OSC towards widely spread applications, our worksarefocusingon1) applying the solution processed inorganic materials to ameliorate the intrinsic drawback in OSCs; and 2)proposing novel and simple solution process to improve electrical properties of OSCs by controlling the film quality thus the electrical properties during the film formation process.
Detailed work is listed below:
1. Incorporating of metal nanoparticles (NPs) for improving OSC efficiency
Metal NPs are selected as the candidate for improving OSC efficiency through their unique optical and electrical properties. Our results show that
(1a) When meal NPs are incorporated in the hole transport layer (HTL) poly-(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), the PCE of OSCs are improved due to enhanced conductivity and rough surface.
(1b) When metal NPs are embedded in the active layer, OSC performance can be further enhanced due to improvement in light absorption and electrical properties. When we incorporate Au NPs in all organic layers of OSCs, accumulation improvements in OSC performances can be achieved.
(1c) When metal NPs are incorporated in electron transport layer of TiO2, the experimental results show that the enhanced charge extraction under solar illumination can be attributing to the UV-excited electrons transfer from TiO2electron transport layer and storage by Au NPs.
2. Solution processed metal oxide thin film for high efficient hole transporting layer (HTL)
The solution-processed transition metal oxides (TMOs) have attracted great attention due to their superior air-stability properties and universal energy level alignment with organic materials. In this thesis, we propose a one-step method to synthesize low-temperature solution-processed TMOs such as molybdenum oxide and vanadium oxide, with good film quality, desirable electrical properties, and improved device stability, for HTLs applications.
3. Self-assemble metal oxide for high efficient electron transporting layer (ETL)
We propose a self-assemble and solution-processed method in fabricating ETLs composed of TiO2 NPs that can simultaneously achieve good film uniformity and homogeneity, and electron transport properties. We believe this new method will be capable for large-area applications in future.
4. Vertical morphology control for active layer.
Besides carrier transport layers, the morphology of the active layer will significantly affect its electrical and optical properties and thus device performance. We propose up-side-down method to modify the nano-morphology blend along vertical direction, which is beneficial to vertical charge transport and thus producing higher OSC performances. The film-growth dynamics of polymer blends is studied, which has been neglected in most study of OSC morphology by others. / published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
|
2 |
On the characterisation of photovoltaic device parameters using light beam induced current measurementsBezuidenhout, Lucian John-Ross January 2015 (has links)
Light Beam Induced Current (LBIC) measurement is a non-destructive technique used to perform localized characterization of solar cells using a light beam as a probe. The technique allows the determination of local photo response of a cell, the electrical parameters and defects that occur in the individual solar cell. The semiconductor materials used to create solar cells are not always defect free and these defects reduce the electrical performance of the device. It is therefore important to use a system that will allow the characterization and extract the solar cell parameters as can be done using the LBIC system. By analysing these parameters and cell defects, further studies can be done to enhance the cell’s lifetime and hence its efficiency. Light beam induced current (LBIC) is a technique that focuses light onto a solar cell device and thus creating a photo-generated current that can be measured in the external circuit for analyses. By scanning this beam probe across a solar cell while measuring the current-voltage characteristics, a map of various parameters can be obtained. This thesis presents the design of the LBIC system, the software interfacing of the data acquisition system and local photo-response within different solar cell technologies. In addition, this thesis represent two curve fitting algorithms namely: the Gradient Descent Optimisation and the Differential Evolution used for the extraction of solar cell device parameters. The algorithms are based on the one-diode solar cell model and make use of the light generated current-voltage (I-V) data obtained from the LBIC system. Different solar cell technologies namely; single crystalline (c-Si) and multicrystalline silicon (mc-Si) was used for analysis. LBIC maps and I-V characteristics of both technologies was obtained. The LBIC maps shows performance degrading defects present in the bulk and the surface of the solar cells as a function of spatial distribution. These localised defects acts as trapping mechanism for the charge carriers and therefore limits recombination within the solar cell and thus decreasing the performance of the solar cell device. The resulting I-V characteristics obtained from the LBIC system were used to determine the performance parameters using the two algorithms. The resultant effect of these parameters on the performance of the solar cells was observed. The overall results showed that LBIC is a useful tool for identifying and characterising defects in solar cells.
|
3 |
Structural engineering of porphyrin small molecules for bulk heterojunction organic solar cell applicationsZhou, Xuan 22 August 2018 (has links)
Organic donor and acceptor have promised the better future energy technologies to alleviate global energy demand and environmental issues. And nowadays they begin to come true in bulk heterojunction organic solar cells (BHJ OSCs) with advantages of low-cost, light-weight, large-area, flexibility, and with high efficiencies (PCEs) of over 14% for converting solar energy to electricity. Porphyrins are unique potential for artificial photocatalysis but their application in BHJ OSCs are still limited by the PCEs less than 10%. This complicacy comes from their inadequate spectral absorptions and the imperfect morphologies. In this thesis, we devote to chemical modification of acceptor-π-porphyrin-π-acceptor (A-π-Por-π-A) structural molecules to enhance their spectral absorptions and phase-separation functions with fullerene acceptor. Firstly, chemically driving J-aggregates have been studied on the new A-π-Por-π-A porphyrin molecule, which could improve the phase-separation of its blend film with PC71BM and and enhance its performance in BHJ OSCs with PCE up to 8.04%. Secondly, two new benzodithiophene (BDT) π-bridged A-π-Por-π-A molecules have been prepared with complementary absorption between the Soret and Q bands. The devices based on the blend fims of the porphyrin donor and PC71BM acceptor exhibit full spectral photocurrent generation and impressive PCEs up to 7.92%. Thirdly, we further extended the π-conjugation of the above BDT π-brigded A-π-Por-π-A molecules by inserting alkyl chain substituted thiophene derivatives into their backbones, resulting in new porphyrin molecules with UV-visible-near-infraed absorption spectra. Using those porphyrin molecules as donor and PCBM as acceptor, the devices show full spectra photocurrent generatoion and appropriate film morphology, resulting in high PCE up to 8.59%. Besides, photocatalysis is also a new promising technology to generate renewable energy. We herein develop new low-cost and noble-metal-free photocatalysts based on Co(OH)2 modified CdS nanowires and applied them for visible light driven hydrogen production from water-splitting. The optimum H2 production rate reaches 14.43 mmol·h−1·g−1 under (λ ≥ 420 nm) upon visible light irradiation, which is 206 and 3 times larger than that of the pristine CdS NWs and 1 wt% Pt-CdS NWs, respectively. The results indicate the promising application of earth-abundant Co(OH)2 as alternative cocatalysts of noble metals.
|
4 |
Fabrication technology of CIGS thin film solar cells on flexible substrates. / 柔性襯底銅銦鎵硒太陽能電池製備工藝 / CUHK electronic theses & dissertations collection / Fabrication technology of CIGS thin film solar cells on flexible substrates. / Rou xing chen di tong yin jia xi tai yang neng dian chi zhi bei gong yiJanuary 2013 (has links)
Ma, Xuhang = 柔性襯底銅銦鎵硒太陽能電池製備工藝 / 馬續航. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 88-91). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese. / Ma, Xuhang = Rou xing chen di tong yin jia xi tai yang neng dian chi zhi bei gong yi / Ma Xuhang.
|
5 |
Intramolecular Singlet Fission in AcenesSanders, Samuel Nathan January 2018 (has links)
In 2017, 98 gigawatts of solar capacity were added globally, outpacing new contributions from coal, gas and nuclear plants combined, based on 161 billion dollars of investment. Solar is the leading contributor to the clean energy revolution and continues to grow in market share and drop in price every year as economy of scale advances the technology. Within this market, silicon and cadmium telluride solar cells dominate nearly all of market share, converting roughly 20% of incident solar power into electricity. It is worth noting that the gains from a 1% increase in power conversion efficiency of the typical 20% solar cell to 21% would be measured, annually, in billions of dollars. If the solar cells installed last year had 1% more power conversion efficiency and the power displaced coal power generation, this enhancement in efficiency would now save roughly 8,000,000 pounds of carbon dioxide emission per hour every hour for the ~220,000-hour (~25 year) lifetime of the solar cells.
Within this context, enhancing the power conversion efficiency of solar cells is crucial economically and environmentally. Because sunlight is incident on the earth as a broad spectrum of different colors, the energy of the photons spans a wide range. Unfortunately, the spectral range limits power conversion efficiency. For example, solar cells are transparent to photons with insufficient energy, while photons with excess energy relax to the band edge of the solar material, losing the excess energy as heat. This thesis focuses on improving the utilization of high energy photons currently lost to this thermalization process.
In Chapter 1, we introduce the photophysical process of singlet exciton fission and give an overview of the field, with a focus on its potential for incorporation into photovoltaic devices. In Chapter 2-8, we discuss our results realizing singlet exciton fission in molecular systems, specifically bipentacenes. This chapter includes the synthesis of these materials, theoretical calculations predicting and rationalizing their photophysical behavior, and the spectroscopic characterization used to demonstrate the singlet fission process. In Chapter 3, we detail a modular synthetic approach to oligomers and even the first polymer of pentacene. We also discuss some basic properties of these materials using techniques such as linear absorption, cyclic voltammetry, and grazing incidence wide angle X-ray scattering spectroscopy. In Chapter 4, we investigate the photophysics of these materials. Photoluminescence upconversion spectroscopy reveals the decay of the singlet exciton on ultrafast timescales, while transient absorption spectroscopy is used to assign the singlet fission timescale, as well as to characterize the triplet absorption spectra.
Chapter 5 discusses the synthesis and photophysics of homoconjugated and non-conjugated pentacene dimers, where singlet fission occurs through sigma bonds. Again, transient absorption spectroscopy is crucial to the assignment of the photophysics at play, but continuous wave time resolved electron spin resonance measurements yield additional insights into interaction between the resulting triplet pair excitons. Chapter 6 provides further detail into the formation of strongly exchange coupled triplet pair states. Continuous wave time resolved electron spin resonance spectroscopy is used to determine the quintet character of these states, and pulsed electron spin resonance measurements nutate the spin of these states to confirm this assignment. Chapter 7 provides the first demonstration that singlet exciton fission is also possible in heterodimer systems. Finally, Chapter 8 delves more deeply into the exciton correlations in these materials with a special focus on the pentacene-tetracene dimer system.
|
6 |
Utilization of metal oxide cathode interfacial layer on donor/acceptor solar cells. / CUHK electronic theses & dissertations collectionJanuary 2011 (has links)
Wang, Mingdong. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
7 |
Transparent electrode design and interface engineering for high performance organic solar cellsZhang, Di, 张笛 January 2014 (has links)
With the growing needs for energy, photovoltaic solar cells have attracted increasing research interests owing to its potentially renewable, feasible and efficient applications. Compared to its inorganic counterparts, organic solar cell (OSC) is highly desirable due to the low-cost processing, light weight, and the capability of flexible applications. While rapid progress has been made with the conversion efficiency approaching 10%, challenges towards high performance OSCs remain, including further improving device efficiency, fully realizing flexible applications, achieving more feasible large-area solution process and extending the stability of organic device.
Having understood the key technical issues of designing high performance OSCs, we focus our work on (1) introducing flexible graphene transparent electrodes into OSCs as effective anode and cathode; (2) interface engineering of metal oxide carrier transport layers (CTLs) in OSCs through incorporating plasmonic metal nanomaterials ;(3)proposing novel film formation approach for solution-processed CTLs in OSCs in order to improve the film quality and thus device performance.
The detailed work is listed below:
1. Design of transparent graphene electrodes for flexible OSCs
Flexible graphene films are introduced into OSCs as transparent electrodes, which complement the flexibility of organic materials. We demonstrate graphene can function effectively as both the anode and cathode in OSCs:
a) Graphene anode: we propose an interface modification for graphene to function as anode as an alternative to using aconventional polymer CTL. Using the proposed interfacial modification, graphene OSCs show enhanced performance. Further analysis shows that our approach provides favorable energy alignment and improved interfacial contact.
b) Graphene cathode: efficient OSCs using graphene cathode are demonstrated, using a new composite CTL of aluminum-titanium oxide (Al-TiO2).We show that the role of Al is two-fold: improving the wettability as well as reducing the work function of graphene. To facilitate electron extraction, self-assembledTiO2is employed on the Al-covered graphene, which exhibits uniform morphology.
2. Incorporation of plasmonic nanomaterialsinto the metal oxide CTLinOSCs
By incorporating metallic nanoparticles (NPs) into the TiO2CTLin OSCs, we demonstrate the interesting plasmonic-electrical effect which leads to optically induced charge extraction enhancement. While OSCs using TiO2CTL can only operate by ultraviolet (UV)activation, NP-incorporated TiO2enables OSCs to perform efficiently at a plasmonic wavelength far longer than the UV light. In addition, the effciency of OSCs incorporated with NPs is notably enhanced. We attribute the improvement to the charge injection of plasmonically excited electrons from NPs into TiO2.
3. Formation of uniform TiO2CTLfor large area applications using a self-assembly approach
A solution-processed self-assembly method is proposed for forming large-area high-quality CTL films. Owing to the careful control of solvent evaporation, uniform film is formed, leading to enhanced OSC performance. Meanwhile, our method is capable of forming large-area films. This approach can contribute to future low-cost, large-area applications. / published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
|
8 |
Studies on the effect of sodium in Bridgman-grown CuInSe₂Myers, Hadley Franklin. January 2008 (has links)
Ingots containing single crystals were grown from melts of Cu, In and Se in either stoichiometric proportions (CuInSe2) or with an excess of Se (CuInSe2.2). In addition, either sodium selenide (Na 2Se) or elemental sodium (Na0) was introduced to both sets of compositions in concentrations ranging from 0 to 3 at. %. The starting constituents were placed in quartz ampoules, which were evacuated and sealed before undergoing a vertical-Bridgman growth procedure. Analysis of deposits seen on the ampoule walls and on the ingot surface after growth revealed the presence of Na, as well as various forms of the other starting elements; however, no Na was found within the crystals. Electrical measurements revealed trends in the thermoelectric power of the ingots to correspond with additions of Na, as well as the presence of excess Se. A sign conversion from p- to n-type was confirmed with addition of sodium to stoichiometric CuInSe2. A suggested mechanism used to explain the effects of Na on the material, based on these experimental observations, is presented.
|
9 |
Hole extraction layer/perovskite interfacial modification for high performing inverted planar perovskite solar cellsSyed, Ali Asgher 31 August 2018 (has links)
Organo-metallic halide perovskite solar cells (PSCs) are considered as a promising alternative photovoltaic technology due to the advantages of low-cost solution fabrication capability and high power conversion efficiency (PCE). PSCs can be made using a conventional (n-i-p) structure and an inverted (p-i-n) configuration. PCE of the conventional p-i-n type PSCs is slightly higher than that of the inverted n-i-p type PSCs. However, the TiO2 electron transporting layer adopted in the conventional PSCs is formed at a high sintering temperature of >450 °C. The TiO2 electron transporting layer limits the application of conventional PSCs using flexible substrates that are not compatible with the high processing temperature. The hole extraction layer (HEL) in the inverted p-i-n type PSCs can be prepared by low-temperature solution fabrication processes, which can be adopted for achieving high performance large area flexible solar cells at a low cost. Inverted PSCs with a PCE range from 10 to 20% have been reported over the past few years. In comparison with the progresses of other photovoltaic technologies, the rapid enhancement in PCE of the PSCs offers an attractive option for commercial viability. The aim of this PhD project is to study the origin of the improvement in the performance of solution-processable inverted PSCs. The surface morphological and electronic properties of the HEL are crucial for the growth of the perovskite active layer and hence the performance of the inverted PSCs. Enhancement in short circuit current density (Jsc), reduced loss in open circuit voltage (Voc), improvement in cha Organo-metallic halide perovskite solar cells (PSCs) are considered as a promising alternative photovoltaic technology due to the advantages of low-cost solution fabrication capability and high power conversion efficiency (PCE). PSCs can be made using a conventional (n-i-p) structure and an inverted (p-i-n) configuration. PCE of the conventional p-i-n type PSCs is slightly higher than that of the inverted n-i-p type PSCs. However, the TiO2 electron transporting layer adopted in the conventional PSCs is formed at a high sintering temperature of >450 °C. The TiO2 electron transporting layer limits the application of conventional PSCs using flexible substrates that are not compatible with the high processing temperature. The hole extraction layer (HEL) in the inverted p-i-n type PSCs can be prepared by low-temperature solution fabrication processes, which can be adopted for achieving high performance large area flexible solar cells at a low cost. Inverted PSCs with a PCE range from 10 to 20% have been reported over the past few years. In comparison with the progresses of other photovoltaic technologies, the rapid enhancement in PCE of the PSCs offers an attractive option for commercial viability. The aim of this PhD project is to study the origin of the improvement in the performance of solution-processable inverted PSCs. The surface morphological and electronic properties of the HEL are crucial for the growth of the perovskite active layer and hence the performance of the inverted PSCs. Enhancement in short circuit current density (Jsc), reduced loss in open circuit voltage (Voc), improvement in charge collection efficiency (ηcc) through suppression of charge recombination were investigated systematically via controlled growth of the perovskite active layer in solution-processed inverted PSCs. Poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate) (PEDOT:PSS) is one of the widely used solution processable conductive materials for hole transporting in different optoelectronic devices. PEDOT:PSS HEL also is a perfect electron blocking layer due to its high LUMO level. However, it has been reported that PEDOT:PSS HEL is related to the deterioration in the stability of PSCs due to its acidic and hygroscopic nature. Modification of PEDOT:PSS using solvent additives or incorporating metallic oxide nanoparticles for improving the processability and the performance of the inverted PSCs were reported. This work has been focused primary on realizing the controlled growth of perovskite active layer via HEL/perovskite interfacial modification using sodium citrate-treated PEDOT:PSS HEL and WO3-PEDOT:PSS composite HEL. Apart from investigating the properties of the modified PEDOT:PSS HELs, the purpose of the work is to improve the understanding of the effect of modified HEL on the growth of the perovskite layer, revealing the charge recombination processes under different operation conditions, analyzing change extraction probability, and thereby improving the overall performance of the PSCs. PCE of >11.30% was achieved for PSCs with a sodium citrate-modified PEDOT:PSS HEL, which is >20% higher than that of a structurally identical control device having a pristine PEDOT:PSS HEL (9.16%). The incident photon to current efficiency (IPCE) and light intensity-dependent J-V measurements reveal that the use of the sodium citrate-modified PEDOT:PSS HEL helps to boost the performance of the inverted PSCs in two ways: (1) it improves the processability of perovskite active layer on HEL, and (2) it enables to enhance the charge extraction efficiency at the HEL/perovskite interface. The suppression of charge recombination in the PSCs with a modified HEL also was examined using photocurrent-effective voltage (Jph-Veff) and transient photocurrent (TPC) measurements. Morphological and structural properties of the perovskite layers were investigated using the scanning electron microscope (SEM) and X-ray diffraction (XRD) measurements. The results reveal that high quality perovskite active layer on the modified HEL was attained forming complete perovskite phase. The surface electronic properties of the modified PEDOT:PSS and pristine PEDOT:PSS layers were studied using X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) measurements. XPS results reveal that treatment of sodium citrate partially removes the PSS unit in the PEDOT:PSS, resulting in an increase in the ratio of PEDOT to PSS from 0.197 for a treated PEDOT:PSS HEL to that of 0.108 for the pristine PEDOT:PSS HEL. UPS measurements also show that there is an observable reduction in the work function of the modified HEL, implying that sodium citrate-modified PEDOT:PSS HEL possesses an improved electron blocking capability, which is beneficial for efficient operation of the inverted PSCs.;The performance enhancement in MAPbI3-based PSCs with a tungsten oxide (WO3)-PEDOT:PSS composite HEL also was analyzed. The uniform composite WO3-PEDOT:PSS HEL was formed on indium tin oxide (ITO) surface by solution fabrication process. The morphological and surface electronic properties of WO3-PEDOT:PSS composite film were examined using AFM, XPS, UPS and Raman Spectroscopy. SEM images reveal that the perovskite films grown on the composite HEL had a full coverage without observable pin holes. XRD results show clearly that no residual of lead iodide phase was observed, suggesting a complete perovskite phase was obtained for the perovskite active layer grown on the composite HEL. The volume ratio of WO3 to PEDOT:PSS of 1:0.25 was optimized for achieving enhanced current density and Voc in the PSCs. It is demonstrated clearly that the use of the WO3-PEDOT:PSS composite HEL helps to improve the charge collection probability through suppression of the charge recombination at the MAPbI3/composite HEL interface. The charge extraction efficiency at the perovskite/PEDOT:PSS and perovskite/composite HEL interfaces were investigated by analyzing the PL quenching efficiency of the MAPbI3 active layer. It is shown that the PL efficiency quenching at the MAPbI3/composite HEL samples is one order of magnitude higher than that measured for the perovskite/pristine PEDOT:PSS sample, suggesting an enhanced hole extraction probability at the MAPbI3/composite HEL interface. The combined effects of improved perovskite crystal growth and enhanced charge extraction capabilities result in the inverted PSCs with a PCE of 12.65%, which is 22% higher than that of a structurally identical control device (10.39%). The use of the WO3-PEDOT:PSS composite HEL also benefits the efficient operation of the PSCs, demonstrated in the stability test, as compared to that of the control cell under the same aging conditions. With the progresses made in improving the performance of MAPbI3-based PSCs, the research was extended to study the performance of efficient PSCs with mixed halide of MA0.7FA0.3Pb (I0.9Br0.1)3. The effect of the annealing temperature on the growth of the mixed MA0.7FA0.3Pb (I0.9Br0.1)3 perovskite active layer was analyzed. It was found that the optimal growth of the mixed perovskite active layer occurred at an annealing temperature of 100°C. UPS results reveal that the ionization potential of 5.76 eV measured for the mixed cation perovskite is lower than that of MAPbI3-based single cation perovskite layer (5.85 eV), while the corresponding electron affinity of the mixed perovskite was 4.28 eV and that for the MAPbI3 layer was 4.18 eV, respectively. The changes in the bandgap and the energy levels of the MA0.7FA0.3Pb (I0.9Br0.1)3 and MAPbI3 active layers were examined using UV-vis absorption spectroscopy and UPS measurements. Compared to the MAPbI3-based control cell, a 23% increase in Jsc, a 15% increase in Voc and an overall 25% increase in PCE for the MA0.7FA0.3Pb (I0.9Br0.1)3 were achieved as compared to that of the MAPbI3-based PSCs. An obvious improvement in charge collection efficiency in MA0.7FA0.3Pb (I0.9Br0.1)3-based PSCs operated at different Veff was clearly manifested by the light intensity dependent J-V characteristic measurements. PL quenching efficiency also shows the charge transfer between MA0.7FA0.3Pb (I0.9Br0.1)3 and PEDOT:PSS HEL is one order of magnitude higher as compare to that in the MAPbI3-based PSCs, suggesting the formation of improved interfacial properties at the MA0.7FA0.3Pb (I0.9Br0.1)3/HEL interface. The impact of incorporating mixed MA0.7FA0.3Pb (I0.9Br0.1)3 perovskite active layer on PCE and the stability of the PSCs was further studied using a combination of TPC measurement and aging test. The stability of MA0.7FA0.3Pb (I0.9Br0.1)3- and MAPbI3-based PSCs with respect to the aging time was monitored for a period of >2 months. The MA0.7FA0.3Pb (I0.9Br0.1)3-based PSCs are more stable compared to the MAPbI3-based PSCs aged under the same conditions. The aging test supports the findings made with the TPC and light intensity dependent J-V measurements. It shows that the improved interfacial quality at the perovskite/HEL and the enhanced charge extraction capability are favorable for efficient and stable operation of MA0.7FA0.3Pb (I0.9Br0.1)3-based PSCs.
|
10 |
Studies on the effect of sodium in Bridgman-grown CuInSe₂Myers, Hadley Franklin. January 2008 (has links)
No description available.
|
Page generated in 0.0892 seconds