• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 752
  • 84
  • 67
  • 62
  • 47
  • 19
  • 13
  • 13
  • 12
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • Tagged with
  • 1369
  • 1369
  • 266
  • 236
  • 216
  • 206
  • 192
  • 185
  • 184
  • 167
  • 156
  • 148
  • 130
  • 120
  • 118
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Silicon quantum dot superlattices in dielectric matrices: SiO2, Si3N4 and SiC

Cho, Young Hyun, Photovoltaics & Renewable Energy Engineering, Faculty of Engineering, UNSW January 2007 (has links)
Silicon quantum dots (QDs) in SiO2 superlattices were fabricated by alternate deposition of silicon oxide (SiO2) and silicon-rich oxide (SRO), i.e. SiOx (x<2), and followed by high temperature annealing. A deposited SRO film is thermodynamically unstable below 1173oC and phase separation and diffusion of Si atoms in the amorphous SiO2 matrix creates nano-scaled Si quantum dots. The quantum-confined energy gap was measured by static photoluminescence (PL) using an Argon ion laser operating at 514.5 nm. The measured energy band gaps of crystalline Si QDs in SiO2 matrix at room temperature (300 K) show that the emission energies from 1.32 eV to 1.65 eV originating Si dot sizes from 6.0 nm to 3.4 nm, respectively. There is a strong blue-shift of the PL energy peak position with decreasing the quantum dot size and this shows the evidence of quantum confinement of our fabricated Si QDs in SiO2 matrix. The PL results indicate that the fabricated Si QDs in SiO2 matrix could be suitable for the device application such as top cell material for all-silicon tandem solar cells. Silicon QD superlattices in nitride matrix were fabricated by alternate deposition of silicon nitride (Si3N4) and silicon-rich nitride (SRN) by PECVD or co-sputtering of Si and Si3N4 targets. High temperature furnace annealing under a nitrogen atmosphere was required to form nano-scaled silicon quantum dots in the nitride matrix. The band gap of silicon QD superlattice in nitride matrix (3.6- 7.0 nm sized dots) is observed in the energy range of 1.35- 1.98 eV. It is about 0.3- 0.4 eV blue-shifted from the band gap of the same sized quantum dots in silicon oxide. It is believed that the increased band gap is caused by a silicon nitride passivation effect. Silicon-rich carbide (SRC, i.e. Si1-xCx) thin films with varying atomic ratio of the Si to C were fabricated by using magnetron co-sputtering from a combined Si and C or SiC targets. Off-stoichiometric Si1-xCx is of interest as a precursor to realize Si QDs in SiC matrix, because it is thermodynamically metastable when the composition fraction is in the range 0 < x < 0.5. Si nanocrystals are therefore able to precipitate during a post-annealing process. SiC quantum dot superlattices in SiC matrix were fabricated by alternate deposition of thin layers of carbon-rich silicon carbide (CRC) and SRC using a layer by layer deposition technique. CRC layers were deposited by reactive co-sputtering of Si and SiC targets with CH4. The PL energy band gap (2.0 eV at 620 nm) from 5.0 nm SRC layers could be from the nanocrystalline ??-SiC with Si-O bonds and the PL energy band gap (1.86 eV at 665 nm) from 6.0 nm SRC layers could be from the nanocrystalline ??-SiC with amorphous SiC clusters, respectively. The dielectric material for an all-silicon tandem cell is preferably silicon oxide, silicon nitride or silicon carbide. It is found that for carrier mobility, dot spacing for a given Bloch mobility is in the order: SiC > Si3N4 > SiO2. By ab-initio simulation and PL results, the band gap for a given dot size is in the order: SiC > Si3N4 > SiO2. However, the PL intensity for a given dot size is in the order: SiC < Si3N4 < SiO2.
212

Novel uses of titanium dioxide for silicon solar cells /

Richards, Bryce Sydney. January 2002 (has links)
Thesis (Ph. D.)--University of New South Wales, 2002. / Also available online.
213

Modifying PC1D to model spontaneous & piezoelectric polarization in III-V nitride solar cells

Mehta, Mohit. January 2008 (has links)
Thesis (M.S.)--University of Delaware, 2008. / Principal faculty advisors: Daniel Chester, Dept. of Computer & Information Sciences; and Christiana Honsberg, Dept. of Electrical and Computer Engineering. Includes bibliographical references.
214

Optimization and characterization of transparent oxide layers for CIGS solar cells fabrication /

Liu, Qiudi. January 2007 (has links)
Thesis (M.S.)--University of Toledo, 2007. / Typescript. "Submitted as partial fulfillment of the requirements for the Masters of Science Degree in Physics." "A thesis entitled"--at head of title. Bibliography: leaves 99-102.
215

Silicon heterojunction solar cell and crystallization of amorphous silicon

Lu, Meijun. January 2009 (has links)
Thesis (Ph.D.)--University of Delaware, 2008. / Principal faculty advisor: Robert W. Birkmire, Dept. of Materials Science & Engineering. Includes bibliographical references.
216

CdTe deposition on CdTe(211) and Si(211) substrates by the CSS technique

Adame, Michelle. January 2008 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2008. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
217

Modeling solutions and simulations for advanced III-V photovoltaics based on nanostructures /

Aguinaldo, Ryan. January 2008 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2008. / Typescript. Includes bibliographical references (p. 151-153).
218

Triple junction amorphous silicon based flexible photovoltaic submodules on polyimide substrates /

Vijh, Aarohi. January 2005 (has links)
Dissertation (Ph.D.)--University of Toledo, 2005. / Typescript. "As partial fulfillment of the requirements for the Doctor of Philosophy Degree in Engineering."
219

Investigation of thin-film cadmium sulphide solar cells

Tsang, Wai Ming. January 1979 (has links)
Thesis (Ph.D.) - University of Glasgow, 1979. / Ph.D. thesis submitted to the Faculty of Engineering, University of Glasgow, 1979. Print version also available.
220

Spectroscope ellipsometry analysis of the component layers of hydrogenated amorphous silicon triple junction solar cells /

Stoke, Jason A. January 2008 (has links)
Thesis (M.S.)--University of Toledo, 2008. / Typescript. "Submitted as partial fulfillment of the requirements for Master of Science in Physics." "A thesis entitled"--at head of title. Bibliography: leaves 129-133.

Page generated in 0.0522 seconds