• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heat transfer and flow friction characteristics of metallic foil matrices using radiation as the heat source, and their application to the design of solar collectors

Chiou, Jiunn Perng, January 1964 (has links)
Thesis (Ph. D.)--University of Wisconsin, 1964. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Bibliography: leaves 197-210.
2

Enhancing electrical and heat transfer performance of high-concentrating photovoltaic receivers

Micheli, Leonardo January 2015 (has links)
In a world that is constantly in need of a continuous, reliable and sustainable energy supply, concentrating photovoltaic technologies have the potential to become a cost effective solution for large scale power generation. In this light, important progresses have been made in terms of cell’s design and efficiency, but the concentrating photovoltaic industry sector still struggles to gain market share and to achieve adequate economic returns. The work presented in this thesis is focused on the development of innovative solutions for high concentrating photovoltaics receivers. The design, the fabrication and the characterization of a large cell assembly for high concentrations are described. The assembly is designed to accommodate 144 multijunction cells and is rated to supply energy up to 2.6kWe at 500 suns. The original outline of the conductive copper layer limits the Joule losses to the 0.7% of the global power output, by reducing the number of interconnections. All the challenges and the issues faced in the manufacturing stage are accounted for and the reliability of the fabrication has been proven by quality tests and experimental investigations conducted on the prototype. An indoor characterization shows the receiver’s potential to supply a short-circuit current of 5.77A and an open circuit voltage per cell of 3.08V at 500×, under standard test conditions, only 4.80% and 2.06% respectively lower than those obtained by a commercial single-cell assembly. An electrical efficiency of 29.4% is expected at 500 suns, under standard conditions. A prototype’s cost of $0.91/Wp, in line with the actual price of CPV systems, has been recorded: a cost breakdown is reported and the way to further reduce the cost have been identified and is accounted. In a second approach, the design of a natural convective micro-finned array to be integrated in a single cell receiver has been successfully attempted. Passive cooling systems are usually cheaper, simpler and considered more reliable than active ones. After a detailed review of micro-cooling solutions, an experimental investigation on the thermal behaviour of micro-fins has been conducted and has been combined with a multiphysics software model. A micro-finned heat sink shows the potential to keep the CPV temperature below 100°C under standard conditions and the ability to handle the heat flux when the cell’s efficiency drops to zero. Moreover, a micro-finned heat sink demonstrates the potential to introduce significant benefits in terms of material usage and weight reduction: compared to those commercially available, a micro-finned heat sink has a power-to-weight ratio between 6 and 8 times higher, which results in lower costs and reduced loads for the CPV tracker.
3

Ekologické vytápění / Environmental-friendly heating

Čekanová, Adéla January 2010 (has links)
The subject of thesis is environmental-friendly heating. Theoretical part includes overview of possible ways using alternative energy sources, especially solar energy and energy environment - heat pumps. Partical part is devoted to solution of environmental-friendly heating and heating warm water for family house using solar system. The proposal is documented with economic evaluation and calculation of economic return.

Page generated in 0.0721 seconds