• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 25
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 139
  • 139
  • 39
  • 28
  • 26
  • 20
  • 19
  • 16
  • 16
  • 16
  • 14
  • 14
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Combined solar and pellet heating systems : Study of energy use and CO-emissions

Fiedler, Frank January 2006 (has links)
<p>In this study 4 solar and pellet heating systems have been studied with the help of annual dynamic simulations. Two of the systems comprised a pellet stove and two systems were solar combisystems; one with a store integrated pellet burner, the other with a separate pellet boiler.</p><p>The aim was to evaluate their thermal performance and their CO-emissions. The systems have been modelled based on lab measurements of the single system components. The used models allow a detailed study of the dynamic behaviour of the systems.</p><p>The stove systems have the least primary energy consumption provided the auxiliary electricity is taken into account with a conversion factor of 100%. If the auxiliary electricity is taken into account with a conversion of 40% and/or the systems are placed in the heated area the combisystems need less or a similar amount of primary energy.</p><p>Modulating combustion power reduces the number of starts and stops and for most pellet units this reduces the total CO emissions. The obtained annual CO emissions are higher than the values obtained from the standard test methods. It was shown that the average emissions under realistic annual conditions were greater than the limit values of two Eco-labels.</p><p>The system performance can be significantly improved by a proper control of the pellet heater and by sizing the pellet heater according to the size of the peak space heating demand.</p><p>Based on these findings from the simulations two prototypes of a combined solar and pellet heating system has been designed, built and tested; one for the lab and one that has been installed in a demonstration house. The system is very compact and is suitable for detached houses with no heating room or little space for a heating room.</p>
52

Investigation of standard test procedures for integral storage solar domestic hot water systems /

Lindsay, Russell Charles, January 1983 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1983. / Vita. Abstract. Includes bibliographical references (leaves 80-82). Also available via the Internet.
53

Combined solar and pellet heating systems : Study of energy use and CO-emissions

Fiedler, Frank January 2006 (has links)
In this study 4 solar and pellet heating systems have been studied with the help of annual dynamic simulations. Two of the systems comprised a pellet stove and two systems were solar combisystems; one with a store integrated pellet burner, the other with a separate pellet boiler. The aim was to evaluate their thermal performance and their CO-emissions. The systems have been modelled based on lab measurements of the single system components. The used models allow a detailed study of the dynamic behaviour of the systems. The stove systems have the least primary energy consumption provided the auxiliary electricity is taken into account with a conversion factor of 100%. If the auxiliary electricity is taken into account with a conversion of 40% and/or the systems are placed in the heated area the combisystems need less or a similar amount of primary energy. Modulating combustion power reduces the number of starts and stops and for most pellet units this reduces the total CO emissions. The obtained annual CO emissions are higher than the values obtained from the standard test methods. It was shown that the average emissions under realistic annual conditions were greater than the limit values of two Eco-labels. The system performance can be significantly improved by a proper control of the pellet heater and by sizing the pellet heater according to the size of the peak space heating demand. Based on these findings from the simulations two prototypes of a combined solar and pellet heating system has been designed, built and tested; one for the lab and one that has been installed in a demonstration house. The system is very compact and is suitable for detached houses with no heating room or little space for a heating room.
54

Development of a ESES Solar Thermal Lab on Full Scale System / Development of a Solar Thermal Lab on Full Scale System

Elemam, Aboubker January 2011 (has links)
The main aim of this project is to develop an ESES lab on a full scale system. The solar combisystem used is available most of the time and is only used twice a year to carry out some technical courses. At the moment, there are no other laboratories about combisystems. The experiments were designed in a way to use the system to the most in order to help the students apply the theoretical knowledge in the solar thermal course as well as make them more familiar with solar systems components. The method adopted to reach this aim is to carry out several test sequences on the system, in order to help formulating at the end some educating experiments. A few tests were carried out at the beginning of the project just for the sake of understanding the system and figuring out if any additional measuring equipment is required. The level of these tests sequences was varying from a simple energy draw off or collector loop controller respond tests to more complicated tests, such as the use of the ‘collector’ heater to simulate the solar collector effect on the system. The tests results were compared and verified with the theoretical data wherever relevant. The results of the experiment about the use of the ‘collector’ heater instead of the collector were positively acceptable. Finally, the Lab guide was developed based on the results of these experiments and also the experience gotten while conducting them. The lab work covers the theories related to solar systems in general and combisystems in particular.
55

Optimum control strategies for solar heating and cooling systems

Jung, Henry 08 1900 (has links)
No description available.
56

Design of solar power plant with coupled thermal storage

Fernandez-Munoz, Raul 05 1900 (has links)
No description available.
57

Evaluation of a thermal network simulation program

Wright, Charles Scott 08 1900 (has links)
No description available.
58

Solar heated houses in Canada

Kevorkov, Garo O. January 1977 (has links)
No description available.
59

Solar-assisted refrigerant-filled collector heat pumps

O'Dell, Michael P. January 1982 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1982. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 131-132).
60

Solar energy for domestic use

Van Zyl, GHC January 2000 (has links)
Thesis (MTech(Chemical engineering))--Cape Technikon, Cape Town, 2000 / The demand for pool heating has increased dramatically over the last few years. This is ascribed to the idea that a swimming pool is expensive and can only be used for four months of the year. Therefore, a need for a relatively inexpensive solar heating system, capable of heating pool water to comfortable temperatures for an extended period, does exist. The least expensive solar heating system for swimming pool heating on the market in South Africa is in the order of R 11000. This is a fixed system, usually mounted on the roof of a house. In order to ensure the safety of minors, a safety net or sail must be installed. This is an additional cost, which approximates R1500, yielding a total cost for safety and heating in the order of R 12500. Copper pipes packed in black material are utilised in these conventional heating systems, and it is the cost of this good heat conductor that makes these units expensive. In this study an alternative pool heating system constructed of PVC was investigated. The system is designed to be flexible, mobile, act as a safety mechanism and absorbs the maximum amount of solar energy available. Dark blue material as opposed to black PVC was selected for aesthetic reasons at the expense of maximum efficiency. The material strength was tested as well as the strength of adhesion. The influence of factors such as exposure to the sun and the effect of water containing chlorine and acid on the material were evaluated. Also, various means of channelling the water through the system for increased efficiency was investigated. A pilot model was constructed and its performance evaluated. It has been concluded that the alternative approach provides effective heating at a lower cost than current systems. Also, the durability of the design was found to be acceptable.

Page generated in 0.0549 seconds