Spelling suggestions: "subject:"solar power plants -- south africa"" "subject:"solar power plants -- south affrica""
1 |
Solar energy technology road map developing a local supply chain in South Africa for concentrated solar power plant16 September 2015 (has links)
M.Ing. / The necessity for deployment of Concentrated Solar Power (CSP) technology in the South African energy sector is examined in this dissertation. A background is given on the different technologies that exist in the solar power sector with specific reference to Concentrated Solar Thermal Power (CSTP). The economic, social and environmental benefits that this technology embodies in the near-, medium-, and long-term is discussed in detail. It highlights the local market potential for the establishment and large-scale roll out of CSP technology in a South African context and the economic value-chain that could subsequently be created...
|
2 |
Probabilistic solar power forecasting using partially linear additive quantile regression models: an application to South African dataMpfumali, Phathutshedzo 18 May 2019 (has links)
MSc (Statistics) / Department of Statistics / This study discusses an application of partially linear additive quantile regression
models in predicting medium-term global solar irradiance using data
from Tellerie radiometric station in South Africa for the period August 2009
to April 2010. Variables are selected using a least absolute shrinkage and
selection operator (Lasso) via hierarchical interactions and the parameters
of the developed models are estimated using the Barrodale and Roberts's
algorithm. The best models are selected based on the Akaike information
criterion (AIC), Bayesian information criterion (BIC), adjusted R squared
(AdjR2) and generalised cross validation (GCV). The accuracy of the forecasts
is evaluated using mean absolute error (MAE) and root mean square
errors (RMSE). To improve the accuracy of forecasts, a convex forecast combination
algorithm where the average loss su ered by the models is based
on the pinball loss function is used. A second forecast combination method
which is quantile regression averaging (QRA) is also used. The best set
of forecasts is selected based on the prediction interval coverage probability
(PICP), prediction interval normalised average width (PINAW) and prediction
interval normalised average deviation (PINAD). The results show that
QRA is the best model since it produces robust prediction intervals than
other models. The percentage improvement is calculated and the results
demonstrate that QRA model over GAM with interactions yields a small
improvement whereas QRA over a convex forecast combination model yields
a higher percentage improvement. A major contribution of this dissertation
is the inclusion of a non-linear trend variable and the extension of forecast
combination models to include the QRA. / NRF
|
3 |
Evaluation of the suitably of proposed site for construction of photovoltaic solar facility at Kakamas in the Northern Cape of South AfricaTshilate, Lindelani 18 May 2019 (has links)
MESMEG / Department of Mining and Environmental Geology / Solar energy development is experiencing significant growth due to national interest in increasing energy efficiency, reducing dependence on fossil fuels, increasing domestic energy production, and curbing greenhouse gas emissions. Northern Cape is generally known to be one of the preferred areas for the generation of solar energy in South Africa, and even in the world, due to its abundant solar radiation. Although this area has abundant potential for solar power generation, not all the areas are suitable for construction of solar plant facilities especially those that are prone to sand storm and dust accumulation. Consequently, site evaluation is very crucial for planning, design and construction of the solar facility. The main objective of this study was to determine the suitability of a proposed site at Kakamas in the Northern Cape for construction of a photovoltaic solar facility.
The specific objectives of this research were to assess and establish all the geotechnical aspects that may have an impact on the development of the site, to explore the surface conditions at the proposed site and to establish the soil properties and comment on the use of the on-site soils in the construction of the solar facility. Other specific objectives included to determine the variability of ground conditions and effects of such variability on the proposed development and to provide foundation recommendations for the design and construction of the solar facility. In order to obtain this information, methods such as desktop studies, geological survey, soil survey, magnetic survey and soil profiling were employed to obtain information about the geotechnical aspects of the study area and properties of the on-site soil. Field tests such as cone penetration and resistivity survey and laboratory tests such as foundation indicator test, California Bearing Ratio, pH and permeability test were also performed in order to determine the engineering, behavioral and hydraulic properties of the soil.
The results of the geologic and magnetic survey indicated that the study area is underlain by mainly igneous and metamorphic rocks such as gneiss, quartzite, pegmatite, gneiss and calcrete. The results of the soil profiling and the resistivity survey showed that the study area is comprised of sandy soil with either two or three horizons while the cone
penetration results revealed high variable soil consistency and stiffness which ranged from very loose to very stiff soils. The particle size distribution, atterberg limits and grading modulus indicated that the study area is characterized mainly by dry, cohesionless and non-plastic to slightly plastic coarse-grained sandy soil with sand content ranging from 71- 96%. From the CBR results, it was found that the soils in the study area generally classifies as G6 material and can be used as base, sub base and backfilling material in accordance with the TRH 14 specifications.
The permeability test results indicated moderately permeable sandy silt soils with coefficient of permeability ranging between 1x10-3 to 8x10-3 cm/sec and ground water was encountered at 1.3 m depth. The material excavatability indicated variable material on site ranging from soft calcretes with soft excavation to highly competent material such as quartz and dorbank which require hard excavation while the side wall stability of trial pits indicated stable pit walls during the investigation giving an indication of stability of long pit excavations. The foundation analysis showed that driven piles and earth screws are the ideal foundation types for this site and that the site is generally suitable for construction of the solar facility provided all the recommendations are implemented. / NRF
|
Page generated in 0.1118 seconds