• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigations on Multiscale Fractal-textured Superhydrophobic and Solar Selective Coatings

Jain, Rahul 21 August 2017 (has links)
Functional coatings produced using scalable and cost-effective processes such as electrodeposition and etching lead to the creation of random roughness at multiple length scales on the surface. The first part of thesis work aims at developing a fundamental mathematical understanding of multiscale coatings by presenting a fractal model to describe wettability on such surfaces. These surfaces are described with a fractal asperity model based on the Weierstrass-Mandelbrot function. Using this description, a model is presented to evaluate the apparent contact angle in different wetting regimes. Experimental validation of the model predictions is presented on various hydrophobic and superhydrophobic surfaces generated on several materials under different processing conditions. Superhydrophobic surfaces have myriad industrial applications, yet their practical utilization has been severely limited by their poor mechanical durability and longevity. Toward addressing this gap, the second and third parts of this thesis work present low cost, facile processes to fabricate superhydrophobic copper and zinc-based coatings via electrodeposition. Additionally, systematic studies are presented on coatings fabricated under different processing conditions to demonstrate excellent durability, mechanical and underwater stability, and corrosion resistance. The presented processes can be scaled to larger, durable coatings with controllable wettability for diverse applications. Apart from their use as superhydrophobic surfaces, the application of multiscale coatings in photo-thermal conversion systems as solar selective coatings is explored in the final part of this thesis. The effects of scale-independent fractal parameters of the coating surfaces and heat treatment are systematically explored with respect to their optical properties of absorptance, emittance, and figure of merit (FOM). / Master of Science

Page generated in 0.076 seconds