• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • Tagged with
  • 28
  • 28
  • 28
  • 13
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Tools for flexible electrochemical microfabrication /

Wang, Weihua, January 2002 (has links)
Thesis (Ph. D.)--University of Washington, 2002. / Vita. Includes bibliographical references (leaves 100-118).
12

Advanced data exchange for solid freeform fabrication /

Park, Seok-min, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 147-159). Available also in a digital version from Dissertation Abstracts.
13

Modeling, analysis and experimentation for building ice parts with supports using rapid freeze prototyping

Bryant, Frances Denise, January 2008 (has links) (PDF)
Thesis (Ph. D.)--Missouri University of Science and Technology, 2008. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed May 28, 2009) Includes bibliographical references (p. 91-93).
14

Densification and properties evolution of stainless steel alloys fabricated by three-dimensional printing

Kim, Yongha, January 2009 (has links) (PDF)
Thesis (M.S. in mechanical engineering)--Washington State University, August 2009. / Title from PDF title page (viewed on Sept. 16, 2009). "School of Engineering and Computer Science." Includes bibliographical references (p. 77-83).
15

Plasma and mechanical properties and process parameter selection criteria for laser rapid manufacturing

Kahlen, Franz Josef 01 April 2000 (has links)
No description available.
16

Multi-Physics Analysis of Laser Solid Freeform Fabrication

Alimardani , Masoud 03 1900 (has links)
The quality of parts fabricated using Laser Solid Freeform Fabrication (LSFF) is highly dependent on the physical phenomena and operating parameters which govern the process. For instance, the thermal stress patterns and intensity, induced throughout the process domain due to the layer-by-layer material deposition and the temperature distribution characteristics, contribute significantly to potential delamination and crack formation across the fabricated part. In this research, some of the main features as well as drawbacks of this technique are studied through a multi-physics analysis of the process. For this purpose, a coupled time-dependent 3D model is developed with which the geometry of the deposited material as well as temperature and thermal stress fields across the process domain can be predicted. In the proposed approach, coupled thermal and stress domains are numerically obtained assuming a decoupled interaction between the laser beam and powder stream. To predict the geometry of the deposited material, once the melt pool boundary is obtained, the process domain is discretized in a cross-sectional fashion based on the powder feed rate, elapsed time, and intersection of the melt pool and powder stream projected on the substrate. Layers of additive material are then added onto the non-planar domain. The main process parameters affected by a multilayer deposition due to the formation of non-planar surfaces, such as powder catchment, are incorporated into the modelling approach to enhance the accuracy of the results. To demonstrate the proposed algorithm and to study the main features of the process, a four-layer thin wall of AISI 304L steel on a substrate of the same material is numerically and experimentally fabricated. The numerical analyses along with the experimental results are then used to investigate the correlation between the temperature-thermal stress fields and crack formation across the fabricated parts. The trend of the results reveals that by preheating the substrate prior to the fabrication process, it is possible to substantially reduce the formed micro-cracks. To demonstrate the feasibility of preheating on the reduction of micro-cracks, several simulations and experiments are performed in which a crack-free result is obtained, with a 22 per cent reduction in thermal stresses when the substrate is preheated to 800 K. The numerical and experimental results are also used to study the circumstances of the microstructural formation during the fabrication process. To conclude this research, the developed modelling approach is further extended to briefly discuss the effects of the path patterns and the main operating parameters on the outcomes of the process. The effects of the material properties and their variations on the temperature distributions and thermal stress fields are studied by fabrication of a thin wall of two Stellite 6 layers and two Ti layers on a stainless steel substrate.
17

Multi-Physics Analysis of Laser Solid Freeform Fabrication

Alimardani , Masoud 03 1900 (has links)
The quality of parts fabricated using Laser Solid Freeform Fabrication (LSFF) is highly dependent on the physical phenomena and operating parameters which govern the process. For instance, the thermal stress patterns and intensity, induced throughout the process domain due to the layer-by-layer material deposition and the temperature distribution characteristics, contribute significantly to potential delamination and crack formation across the fabricated part. In this research, some of the main features as well as drawbacks of this technique are studied through a multi-physics analysis of the process. For this purpose, a coupled time-dependent 3D model is developed with which the geometry of the deposited material as well as temperature and thermal stress fields across the process domain can be predicted. In the proposed approach, coupled thermal and stress domains are numerically obtained assuming a decoupled interaction between the laser beam and powder stream. To predict the geometry of the deposited material, once the melt pool boundary is obtained, the process domain is discretized in a cross-sectional fashion based on the powder feed rate, elapsed time, and intersection of the melt pool and powder stream projected on the substrate. Layers of additive material are then added onto the non-planar domain. The main process parameters affected by a multilayer deposition due to the formation of non-planar surfaces, such as powder catchment, are incorporated into the modelling approach to enhance the accuracy of the results. To demonstrate the proposed algorithm and to study the main features of the process, a four-layer thin wall of AISI 304L steel on a substrate of the same material is numerically and experimentally fabricated. The numerical analyses along with the experimental results are then used to investigate the correlation between the temperature-thermal stress fields and crack formation across the fabricated parts. The trend of the results reveals that by preheating the substrate prior to the fabrication process, it is possible to substantially reduce the formed micro-cracks. To demonstrate the feasibility of preheating on the reduction of micro-cracks, several simulations and experiments are performed in which a crack-free result is obtained, with a 22 per cent reduction in thermal stresses when the substrate is preheated to 800 K. The numerical and experimental results are also used to study the circumstances of the microstructural formation during the fabrication process. To conclude this research, the developed modelling approach is further extended to briefly discuss the effects of the path patterns and the main operating parameters on the outcomes of the process. The effects of the material properties and their variations on the temperature distributions and thermal stress fields are studied by fabrication of a thin wall of two Stellite 6 layers and two Ti layers on a stainless steel substrate.
18

Additive layer manufacturing of TI-6AL-4V by electron beam melting from powder particles solid, mesh and foam components study /

Gaytan Guillen, Sara Marisela, January 2009 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2009. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
19

Automated Loading and Unloading of the Stratasys FDM 1600 Rapid Prototyping System

Brockmeier, Oivind 28 March 2000 (has links)
Rapid prototyping systems have advanced significantly with respect to material capabilities, fabrication speed, and surface quality. However, build jobs are still manually activated one at a time. The result is non-productive machine time whenever an operator is not at hand to make a job changeover. A low-cost auxiliary system, named Continuous Layered Manufacturing (CLM), has been developed to automatically load and unload the FDM 1600 rapid prototyping system (Stratasys, Inc.). The modifications made to the FDM 1600 system are minimal. The door to the FDM 1600 build chamber is removed, and the .SML build files that are used to drive the FDM 1600 are modified at both ends to facilitate synchronized operation between the two systems. The CLM system is capable of running three consecutive build jobs without operator intervention. As long as an operator removes finished build jobs, and adds new build trays before at most every three build jobs, the FDM can operate near indefinitely. The impact of the CLM system on the productivity of the FDM 1600 rapid prototyping system is demonstrated by the expected reduction from the customary eight weeks down to a future three and one-half weeks required to complete the typical forty build jobs during a semester in the course ME 4644 Introduction to Rapid Prototyping at Virginia Tech. / Master of Science
20

Evaluation of Negative Stiffness Elements for Enhanced Material Damping Capacity

Kashdan, Lia Beatrix 29 October 2010 (has links)
Constrained negative stiffness elements in volume concentrations (1% to 2%) embedded within viscoelastic materials have been shown to provide greater energy absorption than conventional materials [Lakes et al., Nature (London) 410, 565–567 (2001)]. This class of composite materials, called meta-materials, could be utilized in a variety of applications including noise reduction, anechoic coatings and transducer backings. The mechanism underlying the meta-material's behavior relies on the ability of the negative stiffness element to locally deform the viscoelastic material, dissipating energy in the process. The work presented here focuses specifically on the design of the negative stiffness elements, which take the form of buckled beams. By constraining the beam in an unstable, S-shaped configuration, the strain energy density of the beam will be at a maximum and the beam will accordingly display negative stiffness. To date, physical realization of these structures has been limited due to geometries that are difficult to construct and refine with conventional manufacturing materials and methods. By utilizing the geometric freedoms allowed by the Selective Laser Sintering (SLS) machines, these structures can be built and tuned for specific dynamic properties. The objective of this research was to investigate the dynamic behavior of SLS-constructed meso-scale negative stiffness elements with the future intention of miniaturizing the elements to create highly absorptive meta-materials. This objective was accomplished first through the development and analysis of a mathematical model of the buckled beam system. A characterization of the Nylon 11 material was performed to obtain the material properties for the parts that were created using SLS. Applying the mathematical model and material properties, a tuned meso-scale negative stiffness structure was fabricated. Transmissibility tests of the meso-scale structure revealed that the constrained negative stiffness system was able to achieve overall higher damping and vibration isolation than an unconstrained system. Quasistatic behavior of the system indicated that these elements would be ideal for implementation within meta-materials. Based on the results of the meso-scale system, a method to test a representative volume element for a negative stiffness meta-material was developed for future completion. / text

Page generated in 0.1259 seconds