• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vibrational wave packets: Molecular state reconstruction in the gas phase and mixed quantum/semiclassical descriptions of small-molecule dynamics in low-temperature solid media / Molecular state reconstruction in the gas phase and mixed quantum/semiclassical descriptions of small-molecule dynamics in low-temperature solid media

Chapman, Craig Thomas, 1980- 03 1900 (has links)
xiv, 195 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. / We explore the reconstruction of B-state vibrational wave packets in I 2 from simulated two-color nonlinear wave packet interferometry data. As a simplification of earlier proposals, we make use of different vibrational energy ranges in the B-state--rather than different electronic potential surfaces--for the short-pulse preparation and propagation of both target and reference wave packets. Numerical results from noisy interferograms indicate that experimental reconstruction should be possible with high fidelity (>0.99). Time-resolved coherent nonlinear optical experiments on small molecules in low-temperature host crystals are exposing valuable information on quantum mechanical dynamics in condensed media. We make use of generic features of these systems to frame two simple, comprehensive theories that will enable the efficient calculation of their ultrafast spectroscopic signals and support their interpretation in terms of the underlying chemical dynamics. Both treatments rely on the identification of normal coordinates to unambiguously partition the well-structured guest-host complex into a system and a bath and expand the overall wave function as a sum of product states between fully anharmonic vibrational basis states for the system and approximate Gaussian wave packets for the bath degrees of freedom. The theories exploit the fact that ultrafast experiments typically drive large-amplitude motion in a few intramolecular degrees of freedom of higher frequency than the crystal phonons, while these intramolecular vibrations indirectly induce smaller-amplitude--but still perhaps coherent--motion among the lattice modes. The equations of motion for the time-dependent parameters of the bath wave packets are fairly compact in a fixed vibrational basis/Gaussian bath (FVB/GB) approach. An alternative adiabatic vibrational basis/Gaussian bath (AVB/GB) treatment leads to more complicated equations of motion involving adiabatic and nonadiabatic vector potentials. Numerical tests of the FVB/GB are presented. We consider two bilinearly coupled harmonic oscillators with varying coupling strengths and initial conditions and show that the mixed quantum/semiclassical theory compares favorably with the exact results. Linear absorption spectra and wave-packet interferometry signals calculated using the theory are presented. This dissertation includes previously published coauthored material. / Committee in charge: David Herrick, Chairperson, Chemistry; Jeffrey Cina, Advisor, Chemistry; Thomas Dyke, Member, Chemistry Michael Kellman, Member, Chemistry; Hailin Wang, Outside Member, Physics
2

Exploring active chemolithoautotrophic microorganisms thriving at deep-sea hydrothermal vent chimney structures in the Mid-Okinawa Trough by using RNA-based microbial community analysis and a new culture method. / 中部沖縄トラフ熱水噴出孔チムニーで活動的な化学合成微生物をRNAに基づく微生物群集構造解析と新規培養法によって調査する

Muto, Hisashi 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(農学) / 甲第24679号 / 農博第2562号 / 新制||農||1100(附属図書館) / 学位論文||R5||N5460(農学部図書室) / 京都大学大学院農学研究科応用生物科学専攻 / (主査)教授 澤山 茂樹, 教授 吉田 天士, 准教授 中川 聡 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
3

Elementos finitos quadrilaterais Hermitianos de alta regularidade gerados pela partição de unidade aplicados na solução de problemas de elasticidade e elastodinâmica

Mazzochi, Rudimar January 2014 (has links)
Neste trabalho foram desenvolvidas as funções de interpolação com regularidades C1 e C2, utilizando o Método da Partição de Unidade, referentes ao elemento quadrilateral de quatro nós. Estes elementos quadrilaterais Hermitianos de regularidade C1 e C2 foram implementados em uma plataforma própria de elementos finitos, considerando uma estratégia do tipo sub-paramétrica. De forma comparativa com os elementos Lagrangeanos de regularidade C0 e diferentes ordens polinomiais, os elementos de regularidade C1 e C2 foram aplicados na solução de: problemas clássicos de elasticidade plana infinitesimal isotrópica; aproximação das frequências naturais de vibração livre de barras e viga; pro- pagação de onda elástica em barra devido à aplicação de força impulsiva. Os resultados obtidos mostraram que foi possível se obter um maior percentual de frequências naturais aproximadas do espectro discreto, dado um certo nível de erro máximo, com os elementos de regularidade C1 e C2 em comparação com os elementos Lagrangeanos de regularidade C0 de quatro, oito, dezesseis e vinte e cinco nós. Quanto ao problema de propagação de onda elástica devido à aplicação de força impulsiva, as soluções obtidas com os elementos de regularidade C1 e C2 também apresentaram-se satisfatórias em relação à solução ana- lítica e às soluções aproximadas obtidas com os elementos Lagrangeanos de regularidade C0 de quatro e oito nós. Por outro lado, nas simulações dos problemas de elasticidade plana infinitesimal isotrópica, os elementos de regularidade C1 e C2 não apresentaram um comportamento satisfatório. Os erros relativos em normas L2 e de energia da solução aproximada foram maiores do que aqueles obtidos com o elemento Lagrangeano de regularidade C0 de oito nós, por exemplo, e as taxas de convergência em norma de energia obtidas com tais elementos foram inferiores às preditas pelo estimador de erro a priori. / In this work the shape functions with regularity C1 e C2 were developed, by means of the Partition of Unity Method, concerning to the four-node quadrilateral element. These Hermitian quadrilateral elements with regularity C1 e C2 were implemented in an own platform of finite elements, considering the subparametric strategy. Comparatively with the C 0 regularity Lagrangian elements of different polynomial order, C1 and C2 regularity elements were applied in simulations of: classical isotropic infinitesimal plane elasticity problems; approximation of natural frequencies of free vibration for bars and beam; elastic wave propagation in bar caused by forced vibration with impulsive loading applied. The results obtained showed that was possible to get a major number of natural frequencies of free vibration for the discrete spectrum, given a certain level of error, for C1 and C2 regularity elements in comparison with C 0 regularity Lagrangian elements of four, eight, sixteen and twenty-five nodes. Regarding to the elastic wave propagation problem in bar due to the application of impulsive loading, the solution obtained with C1 and C2 regularity elements also presented satisfactory results with relation to the analytical solution and those obtained with C 0 regularity Lagrangian elements with four and eight nodes. On the other hand, for isotropic infinitesimal plane elasticity problems, C1 and C2 regularity elements did not present satisfactory results. Relative errors in L2 and energy norms of approximate solution were greater than those computed for the C 0 Lagrangian element of eight nodes, for example, and convergence rates obtained with the C1 and C2 regularity elements were lower than those predicted by the a priori error estimator.
4

Elementos finitos quadrilaterais Hermitianos de alta regularidade gerados pela partição de unidade aplicados na solução de problemas de elasticidade e elastodinâmica

Mazzochi, Rudimar January 2014 (has links)
Neste trabalho foram desenvolvidas as funções de interpolação com regularidades C1 e C2, utilizando o Método da Partição de Unidade, referentes ao elemento quadrilateral de quatro nós. Estes elementos quadrilaterais Hermitianos de regularidade C1 e C2 foram implementados em uma plataforma própria de elementos finitos, considerando uma estratégia do tipo sub-paramétrica. De forma comparativa com os elementos Lagrangeanos de regularidade C0 e diferentes ordens polinomiais, os elementos de regularidade C1 e C2 foram aplicados na solução de: problemas clássicos de elasticidade plana infinitesimal isotrópica; aproximação das frequências naturais de vibração livre de barras e viga; pro- pagação de onda elástica em barra devido à aplicação de força impulsiva. Os resultados obtidos mostraram que foi possível se obter um maior percentual de frequências naturais aproximadas do espectro discreto, dado um certo nível de erro máximo, com os elementos de regularidade C1 e C2 em comparação com os elementos Lagrangeanos de regularidade C0 de quatro, oito, dezesseis e vinte e cinco nós. Quanto ao problema de propagação de onda elástica devido à aplicação de força impulsiva, as soluções obtidas com os elementos de regularidade C1 e C2 também apresentaram-se satisfatórias em relação à solução ana- lítica e às soluções aproximadas obtidas com os elementos Lagrangeanos de regularidade C0 de quatro e oito nós. Por outro lado, nas simulações dos problemas de elasticidade plana infinitesimal isotrópica, os elementos de regularidade C1 e C2 não apresentaram um comportamento satisfatório. Os erros relativos em normas L2 e de energia da solução aproximada foram maiores do que aqueles obtidos com o elemento Lagrangeano de regularidade C0 de oito nós, por exemplo, e as taxas de convergência em norma de energia obtidas com tais elementos foram inferiores às preditas pelo estimador de erro a priori. / In this work the shape functions with regularity C1 e C2 were developed, by means of the Partition of Unity Method, concerning to the four-node quadrilateral element. These Hermitian quadrilateral elements with regularity C1 e C2 were implemented in an own platform of finite elements, considering the subparametric strategy. Comparatively with the C 0 regularity Lagrangian elements of different polynomial order, C1 and C2 regularity elements were applied in simulations of: classical isotropic infinitesimal plane elasticity problems; approximation of natural frequencies of free vibration for bars and beam; elastic wave propagation in bar caused by forced vibration with impulsive loading applied. The results obtained showed that was possible to get a major number of natural frequencies of free vibration for the discrete spectrum, given a certain level of error, for C1 and C2 regularity elements in comparison with C 0 regularity Lagrangian elements of four, eight, sixteen and twenty-five nodes. Regarding to the elastic wave propagation problem in bar due to the application of impulsive loading, the solution obtained with C1 and C2 regularity elements also presented satisfactory results with relation to the analytical solution and those obtained with C 0 regularity Lagrangian elements with four and eight nodes. On the other hand, for isotropic infinitesimal plane elasticity problems, C1 and C2 regularity elements did not present satisfactory results. Relative errors in L2 and energy norms of approximate solution were greater than those computed for the C 0 Lagrangian element of eight nodes, for example, and convergence rates obtained with the C1 and C2 regularity elements were lower than those predicted by the a priori error estimator.
5

Elementos finitos quadrilaterais Hermitianos de alta regularidade gerados pela partição de unidade aplicados na solução de problemas de elasticidade e elastodinâmica

Mazzochi, Rudimar January 2014 (has links)
Neste trabalho foram desenvolvidas as funções de interpolação com regularidades C1 e C2, utilizando o Método da Partição de Unidade, referentes ao elemento quadrilateral de quatro nós. Estes elementos quadrilaterais Hermitianos de regularidade C1 e C2 foram implementados em uma plataforma própria de elementos finitos, considerando uma estratégia do tipo sub-paramétrica. De forma comparativa com os elementos Lagrangeanos de regularidade C0 e diferentes ordens polinomiais, os elementos de regularidade C1 e C2 foram aplicados na solução de: problemas clássicos de elasticidade plana infinitesimal isotrópica; aproximação das frequências naturais de vibração livre de barras e viga; pro- pagação de onda elástica em barra devido à aplicação de força impulsiva. Os resultados obtidos mostraram que foi possível se obter um maior percentual de frequências naturais aproximadas do espectro discreto, dado um certo nível de erro máximo, com os elementos de regularidade C1 e C2 em comparação com os elementos Lagrangeanos de regularidade C0 de quatro, oito, dezesseis e vinte e cinco nós. Quanto ao problema de propagação de onda elástica devido à aplicação de força impulsiva, as soluções obtidas com os elementos de regularidade C1 e C2 também apresentaram-se satisfatórias em relação à solução ana- lítica e às soluções aproximadas obtidas com os elementos Lagrangeanos de regularidade C0 de quatro e oito nós. Por outro lado, nas simulações dos problemas de elasticidade plana infinitesimal isotrópica, os elementos de regularidade C1 e C2 não apresentaram um comportamento satisfatório. Os erros relativos em normas L2 e de energia da solução aproximada foram maiores do que aqueles obtidos com o elemento Lagrangeano de regularidade C0 de oito nós, por exemplo, e as taxas de convergência em norma de energia obtidas com tais elementos foram inferiores às preditas pelo estimador de erro a priori. / In this work the shape functions with regularity C1 e C2 were developed, by means of the Partition of Unity Method, concerning to the four-node quadrilateral element. These Hermitian quadrilateral elements with regularity C1 e C2 were implemented in an own platform of finite elements, considering the subparametric strategy. Comparatively with the C 0 regularity Lagrangian elements of different polynomial order, C1 and C2 regularity elements were applied in simulations of: classical isotropic infinitesimal plane elasticity problems; approximation of natural frequencies of free vibration for bars and beam; elastic wave propagation in bar caused by forced vibration with impulsive loading applied. The results obtained showed that was possible to get a major number of natural frequencies of free vibration for the discrete spectrum, given a certain level of error, for C1 and C2 regularity elements in comparison with C 0 regularity Lagrangian elements of four, eight, sixteen and twenty-five nodes. Regarding to the elastic wave propagation problem in bar due to the application of impulsive loading, the solution obtained with C1 and C2 regularity elements also presented satisfactory results with relation to the analytical solution and those obtained with C 0 regularity Lagrangian elements with four and eight nodes. On the other hand, for isotropic infinitesimal plane elasticity problems, C1 and C2 regularity elements did not present satisfactory results. Relative errors in L2 and energy norms of approximate solution were greater than those computed for the C 0 Lagrangian element of eight nodes, for example, and convergence rates obtained with the C1 and C2 regularity elements were lower than those predicted by the a priori error estimator.

Page generated in 0.0375 seconds