• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of processing conditions and second-phase additives on thermoelectric properties of SrTiO3 based ceramics

Srivastava, Deepanshu January 2016 (has links)
Oxide ceramics have been increasingly researched for high temperature thermoelectric (TE) applications. SrTiO3 based materials are promising candidates due to its chemical and thermal stability. In this study, oxide ceramics of composition (1-x)SrTiO3-(x)La1/3NbO3 (0 smaller or equal to x smaller or equal to 0.3) were prepared by single-step solid state sintering in Ar/5%H2 at 1700 K. The density of all the samples prepared was above 90%. All the samples were predominantly single-phase compositions crystallised with a cubic structure in Pm ̅3m space group. The impact of oxygen deficiency, A-site vacancies and mixed oxidation states of Ti3+/Nb4+ on electrical and thermal transport properties was assessed. Optimum TE properties were obtained for x=0.2 (Sr0.8La0.067Ti0.8Nb0.2O(3-delta) = L2), which has 13.4% A-site vacancies. The ZT values improved from 0.2 to 0.27 at 1000 K, with an increase in sintering time from 8 hours to 48 hours, due to increased carrier concentration. Complex interplay of oxygen vacancies and excess donor substitution on A/B-sites of L2 (substituting 5-10% Sr/Ti with La/Nb) exhibited 35% improvement in ZT values, whilst maintaining the A-site vacancies and core-shell structures within grains, which reduced the thermal conductivity by ~50% compared to undoped SrTiO3 samples, due to strong phonon scattering. A facile method to incorporate metallic inclusions (2.5 wt% Fe/Cu) at grain boundaries in L2 ceramics is demonstrated. The modified compositions displayed a maximum ZT of ~0.37 at 1000 K for L2 samples containing metallic inclusions due to increased carrier concentration (5.5 x 10^21 carriers/cm^3) and carrier mobility (2.4 cm^2/(V.s).The addition of graphene/Graphene Oxide (GO) flakes in L2 ceramics has been investigated to improve the electrical conductivity of L2 composites without significantly increasing the thermal conductivity. Spark plasma sintering (SPS) of the composite powders at 1473 K and 50 MPa produced dense samples (>95% relative density) with a homogeneous dispersion of graphene/GO flakes, for loadings smaller or equal to 1.0 wt%. The effect of interaction and distribution of graphene/GO flakes within the ceramics on TE properties is investigated. The composite samples demonstrate anisotropic ZT values, with 20% improvement in the direction normal to the orientation of graphene flakes. A novel sintering method has been proposed which has strong industrial potential. The L2 based composites were sintered in Air at 1700 K (ramp rate: ±300 K/min), whilst samples were covered uniformly. Strong reducing conditions and evolution of secondary phases in the microstructure helped achieve, the very low electrical resistivity of ~3.0 x 10^(-6) ohm.m at room temperature. Secondary phases, sub-micron voids in the grains and A-site vacancies reduced the lattice thermal conductivity (~2.0 W/m.K), comparable to the lowest lattice thermal conductivity achievable (~1.5 W/m.K) at 1000 K and obtain a maximum ZT of 0.4 at 1000 K for L210G-Air/C composites.
2

Phase-field modeling of surface-energy driven processes

Asp Grönhagen, Klara January 2009 (has links)
Surface energy plays a major role in many phenomena that are important in technological and industrial processes, for example in wetting, grain growth and sintering. In this thesis, such surface-energy driven processes are studied by means of the phase-field method. The phase-field method is often used to model mesoscale microstructural evolution in materials. It is a diffuse interface method, i.e., it considers the surface or phase boundary between two bulk phases to have a non-zero width with a gradual variation in physical properties such as energy density, composition and crystalline structure. Neck formation and coarsening are two important diffusion-controlled features in solid-state sintering and are studied using our multiphase phase-field method. Inclusion of Navier-Stokes equation with surface-tension forces and convective phase-field equations into the model, enables simulation of reactive wetting and liquid-phase sintering. Analysis of a spreading liquid on a surface is investigated and is shown to follow the dynamics of a known hydrodynamic theory. Analysis of important capillary phenomena with wetting and motion of two particles connected by a liquid bridge are studied in view of important parameters such as contact angles and volume ratios between the liquid and solid particles. The interaction between solute atoms and migrating grain boundaries affects the rate of recrystallization and grain growth. The phenomena is studied using a phase-field method with a concentration dependent double-well potential over the phase boundary. We will show that with a simple phase-field model it is possible to model the dynamics of grain-boundary segregation to a stationary boundary as well as solute drag on a moving boundary. Another important issue in phase-field modeling has been to develop an effective coupling of the phase-field and CALPHAD methods. Such coulping makes use of CALPHAD's thermodynamic information with Gibbs energy function in the phase-field method. With the appropriate thermodynamic and kinetic information from CALPHAD databases, the phase-field method can predict mictrostructural evolution in multicomponent multiphase alloys. A phase-field model coupled with a TQ-interface available from Thermo-Calc is developed to study spinodal decomposition in FeCr, FeCrNi and TiC-ZrC alloys. / QC 20100622
3

Frittage de composites Cu-Cr pour l'élaboration de matériaux de contact d'ampoules à vide / Sintering of Cu-Cr composites for contact materials in vacuum circuit breakers

Papillon, Anthony 10 May 2016 (has links)
Les composites Cu-Cr sont couramment utilisés comme matériaux de contact électrique pour ampoules à vide des disjoncteurs de moyenne tension. Pourtant très répandu, le frittage en phase solide de ces matériaux a été relativement peu étudié. L’optimisation du procédé passe par la compréhension des mécanismes de frittage. Cette étude est focalisée sur deux aspects importants du frittage : les processus d’oxydo-réduction liés aux oxydes de surfaces des poudres et la compétition entre mécanismes de densification et de gonflement au cours du frittage.L’oxydo-réduction a été étudiée par analyse thermogravimétrique couplée à différentes techniques de spectroscopie d’abord sur les matériaux purs puis sur les composites. Des analyses des interfaces par des coupes réalisées au FIB ont permis de préciser la localisation de l’oxyde dans les matériaux frittés. Un transfert d’oxygène a lieu entre les poudres de cuivre et de chrome. L’intensité de ce transfert dépend de la nature réductrice de l’atmosphère utilisée.La densification a été analysée par dilatométrie sur les matériaux purs et sur les composites. Ces analyses ont été appuyées par des observations microstructurales, notamment par tomographie des rayons X. L’effet des paramètres du procédé (atmosphère, vitesse de chauffage, poudres…) a été étudié. Les résultats montrent le lien entre la désoxydation des poudres de cuivre et le frittage. Un phénomène de gonflement du cuivre seul s’explique par le dégazage du cuivre à haute température lors de la fermeture des pores. Ce gonflement n’a pas lieu dans les composites Cu-Cr car le chrome retarde la fermeture des pores et piège les gaz émis par le cuivre en formant l’oxyde Cr2O3. L’atmosphère de frittage, la morphologie et la taille des poudres de chrome influent sur la densification. Le frittage sous vide permet de réduire la porosité. Une morphologie sphérique des particules de chrome limite l’effet inhibiteur de celui-ci sur la densification. Pour de faibles tailles de particules, le chrome participe à la densification, ce qui permet de mieux densifier le matériau. Ces résultats ouvrent des voies d’optimisation du procédé de frittage des matériaux.Les matériaux élaborés ont été testés dans leurs conditions d’utilisation, c'est-à-dire lors de coupures sur court-circuit en ampoule à vide. Ces essais ont montré l’intérêt de réduire la quantité d’oxyde de chrome et ont permis de déterminer l’effet des impuretés rencontrées usuellement sur les poudres de cuivre et de chrome. / Cu-Cr composites are commonly used as contact materials for medium voltage circuit breakers vacuum bottles. Solid state sintering process of Cu-Cr composites is widespread but has been relatively little studied. Optimizing the process requires understanding the sintering mechanisms. This study was focused on two important aspects of sintering: the redox reactions associated to oxides on the powder surface and the competition between densification and swelling mechanisms during sintering.The redox reactions were studied by thermogravimetric analysis coupled to various spectroscopic techniques, first on isolated Cu and Cr, then on Cu-Cr composites. Interfaces analyses obtained by FIB clarified the location of the oxide inside the sintered materials. Oxygen transfer takes place between copper and chromium powders. This phenomenon strongly depends on the reducing character of the sintering atmosphere.Densification was analyzed by dilatometry on Cu, Cr and Cu-Cr composites. This analysis was supported by microstructural observations, including X-ray tomography .The effect of process parameters (atmosphere, heating rate, powders ...) was studied. The results show the relationship between sintering and copper oxide reduction. The swelling phenomenon of copper compacts is explained by high temperature degassing of copper during pore closure. This swelling does not occur in Cu-Cr composites as chromium delays pore closing and entraps the gases released by copper. Sintering atmosphere, chromium morphology and chromium particle size affect densification. Vacuum sintering reduces porosity. Chromium particles with spherical shape limit its inhibiting effect on densification. For small particle sizes, chromium participates to densification, leading to better densification of the material. These results open the route for optimizing the sintering of Cu-Cr composites.Cu-Cr composites were tested for short circuit performance in vacuum interrupters. The result of these tests showed the importance of reducing the chromium oxide amount. The effect of impurities commonly encountered on the powders copper and chromium powders was also determined.
4

In Situ High Temperature Environmental Scanning Electron Microscopic Investigations of Sintering Behavior in Barium Titanate

Subramaniam, Srinivas 02 October 2006 (has links)
No description available.

Page generated in 0.1071 seconds