• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New Applications of Cyclobutadiene Cycloadditions: Diversity and Target Oriented Synthesis

Marineau, Jason Joseph January 2010 (has links)
Thesis advisor: Marc L. Snapper / Cyclobutadiene cycloadditions provide rapid access to rigid polycyclic systems with high strain energy and unusual molecular geometries. Further functionalization of these systems allows entry into unexplored chemical space. A tricarbonylcyclobutadiene iron complex on solid support enables exploration of these cycloadditions in a parallel format amenable to diversity oriented synthesis. Modeling of the cycloaddition transition states with density functional calculations provides a theoretical basis for analysis of the regioselectivity observed in generation of these substituted bicyclo[2.2.0]hexene derivatives. The high strain energy accessible in cyclobutadiene cycloadducts and their derivatives renders them useful synthons for access to medium-ring natural products through ring expansion. Torilin, a guaiane sesquiterpene isolated from extracts of the fruits of <italic>Torilis japonica</italic>, exhibits a range of biological activities including testosterone 5&alpha;-reductase inhibition, hKv1.5 channel blocking, hepatoprotective, anti-inflammatory and anti-cancer effects. These activities are reviewed and analyzed from the perspective of a common biochemical target. Tandem oxidation and acid-catalyzed rearrangement of a highly strained tetracyclo[5.3.0.0<super>1,5</super>.0<super>2,4</super>]decane in the presence of tetrapropylammonium perruthenate provides the bicyclo[5.3.0]decane core of this natural product with complete control of relevant stereochemistry. The complex precursor required for this rearrangement is rapidly accessed by cyclopropanation of an intramolecular cyclobutadiene cycloadduct. Synthetic studies are reported which provide preliminary access to 8-deoxytorilolone. / Thesis (PhD) — Boston College, 2010. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
2

ISOPRENOID ANALOGS AS CHEMICAL GENETIC TOOLS TO PROVIDE INSIGHTS INTO FARNESYL TRANSFERASE TARGET SELECTION AND CELLULAR ACTIVITY

Troutman, Jerry 01 January 2006 (has links)
Protein farnesylation is an essential post-translational modification required for the function of numerous cellular proteins including the oncoprotein Ras. The farnesyl transferase (FTase) catalyzed reaction is unique because farnesyl diphosphate (FPP), the farnesyl group donor for the reaction, forms a significant portion of a target protein binding site. The major goal of this research was to exploit this unique property of the FTase reaction and determine if changing the structure of the farnesyl donor group would affect FTase protein targeting. A small library of structural analogues of FPP was synthesized. Michelis-Menten steady-state kinetic analyses and competition reactions were used to determine the effect of these structural modifications on FTase targeting. We found that the analogues did affect FTase protein selectivity and that this could be exploited to induce unnatural target selectivity into the enzyme. The second goal of this research was to determine the effect of FPP analogues on the function of FTase target proteins. To test the effect of these analogues we determined whether the unnatural lipid could ablate oncogenic H-Ras biological function in a Xenopus laevis model system. Several analogues were able to disrupt oncogenic H-Ras function while others mimicked the activity of FPP. These results indicated that some of the FPP analogues may act a prenyl group function inhibitors that could lead to an important new class of anti-cancer therapeutics. Another major goal of this research was to use the FPP analogues as unnatural probes for the endogenous cellular activity of FTase target proteins. We developed antibodies to two of the unnatural FPP analogues to study their activity in cell cultureUtilizing these antibodies we found that alcohol prodrugs of the FPP analogues could be incorporated into cellular proteins in an FTase dependent manner. The ability of cell permeant analogues to be incorporated into live cells enhances the chances that such a molecule could be used to modify oncogenic cellular proteins with a prenyl group function inhibitor.
3

Towards voltage-gated ion channels synthesized by solid-phase organic synthesis

Luong, Horace 24 April 2008 (has links)
The goal of this thesis was to develop a method for efficiently synthesizing a large suite of asymmetric oligoester ion channel-forming compounds. A solid-phase organic synthesis (SPOS) approach on Wang resin was used to generate the ion channel candidates. A follow-on goal is to survey the compounds produced to uncover structure-related controls on ion transport activity. Two classes of building blocks were used to generate the oligoesters – head groups and cores. The core building blocks were three omega-hydroxy acid derivatives six, eight and twelve carbons in length and the alcohol protected as a tetrahydropyranyl ether. The head group building blocks were either a glutaric acid monoester derivative of varying lipophilicity (12 to 16 carbon long alkyl tail) or a beta-hydroxy acid derivative; these building blocks used a tert-butyldimethylsilyl ether for alcohol protection. Optimized conditions for building block coupling, deprotection, and product cleavage were first established by the generation of dimeric and trimeric products. The building blocks were coupled using diisopropylcarbodiimide/ dimethylaminopyridine conditions. The deprotection of the tetrahydropyranyl ether group from the alcohol used a dilute acid solution in methanol and dichloromethane. A fluoride solution (from tetrabutylammonium fluoride) in tetrahydrofuran was used to deprotect the tert-butyldimethylsilyl ether group. Cleavage of the product synthesized on Wang resin was achieved by treatment with a trifluoroacetic acid/dichloromethane or ethereal hydrogen chloride solution. The products were then isolated by gel filtration. Mass spectrometry was used to identify the minor impurities which were quantified by proton nuclear magnetic resonance integrations. With the nine building blocks, many tetrameric and pentameric structures can be made, but a directed-library approach was used to address structure-activity related questions. Three pentameric oligoester products were the largest products synthesized to determine the scope and limitations of the SPOS methodology. The oligoester ion channel candidates were tested for ion transport activity using a 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt fluorescence vesicle assay. For each compound a pseudo-first order rate constant was derived at a particular concentration. A more useful normalized rate constant was calculated for an interpolated transporter concentration which allowed for transport activity comparison between compounds. The results from the fluorescence assay showed that some compounds and some isomers were substantially more active than others. There appeared to be an optimal core length and lipophilicity for relatively high activity. The aggregation of the compounds in buffer solution was probed using a pyrene fluorescence experiment. The solid-phase methodology was extended to include coupling of amino acids. A tryptophan derivative was made from one of the most active SPOS oligoester ion channel-forming compounds. The integrity of the molecules synthesized by SPOS which contain the tryptophan group could then be determined by high performance liquid chromatography. The fluorescence of the indole is quenched by acrylamide. By first equilibrating the vesicles with the tryptophan-containing oligoesters and then adding a fluorescence quencher, the resulting indole fluorescence was monitored as a function of quencher concentration. A Stern-Volmer plot was derived based on the quenching data which reported the possible orientations of the tryptophan-containing oligoester within the vesicle.

Page generated in 0.067 seconds