• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Crystallization and Solid-State Transformation of Pseudopolymorphic Forms of Sodium Naproxen

Kim, Young-soo 19 July 2005 (has links)
Incorporation of water molecules in the crystal structure of an organic compound has strong effects on its physical and chemical properties. Therefore, the study on stability of water-incorporated pharmaceutical compounds and mechanisms of hydration and dehydration is very important for the pharmaceutical industries. The main goals of the present research project were quantitative description of the crystallization and solid-state transformations of pseudopolymorphs of sodium naproxen in order to provide fundamental information concerning stability of the pseudopolymorphic forms. Furthermore, macroscopic phenomena of size reduction and anisotropic water-removal by dehydration were rationalized by microscopic aspects of crystal lattice structures. The heats of solution for each pseudopolymorph were estimated by fitting the solubility data with the vant Hoff equation, and their use was extended by the thermodynamic cycle developed in the present study. According to the thermodynamic cycle, for an enantiotropic system, a form with a lower degree of hydration always has the lower heat of solution than a form with a higher degree of hydration, implying that a form with a lower degree of hydration is more stable. The relative stabilities of the dihydrated, the monohydrated, and the anhydrous sodium naproxen at 0% relative humidity were investigated by dehydration of the dihydrated form and powder X-ray diffraction. The monohydrate is more stable than the dihydrate and the result was supported by isothermal TGA experiments. This research explained why powder-like crystals of the anhydrous sodium naproxen were produced by dehydration of hydrated forms. The surfaces of the dehydrated crystals displayed cracks aligned along the b-axis of the monohydrate. These cracks made the anhydrous crystals, which were produced from the monohydrated species, very brittle and, eventually, such crystals were disrupted into much smaller entities. In addition, the existence of water channels in the unit cells of the monohydrate facilitates the dehydration in a direction more rapidly, especially, along the b-axis of the monohydrate. Rapid removal of water in a specific direction caused anisotropic dehydration.
2

Microstructure Formation During Solidification and Solid State Transformation in Compacted Graphite Iron

König, Mathias January 2011 (has links)
Compacted graphite iron (CGI) is rapidly becoming an attractive alternative material for engine components in the automotive industry, replacing lamellar graphite iron (LGI) in applications where high mechanical strength is desired. However, the gain in mechanical strength comes with a cost; thermal conductivity, process control and machining are three areas that are more challenging for CGI. This generates a need for research regarding various aspects concerning CGI. In this thesis the microstructure formation during solidification and solid state transformation will be the focus of interest. The phase transformations relevant for microstructure formation of importance to properties in CGI were studied. Experiments were performed in an industrial foundry giving this research direct relevance to regular production of CGI castings. Solidification of the grey (graphite/austenite) eutectic will be discussed, focusing on some relevant aspects influencing the graphite morphology of CGI. The formation of graphite nodules has been investigated by studying colour-etched microstructures. In a material containing mainly CGI cells it was found that nodules form either early during solidification as a consequence of high undercooling or late in the solidification sequence due to a combination of high undercooling and segregation of nodularising elements. Solidification of the white (cementite/austenite) eutectic was studied using chill wedges and the influence of some alloying elements on the amount of carbides was examined. To further enhance the understanding of carbide formation in CGI a commercial casting simulation software was used to correlate real castings to simulations. It was found that the alloying elements investigated influence the carbide formation in a similar way as in other graphitic cast irons and that high nodularity CGI is more prone to chill formation than low nodularity CGI. The solid state transformation was studied and a deterministic model was developed. The model divides a eutectic cell into layers, in order to take into account segregation of alloying elements, which was observed to be influential for the ferrite growth. Moreover, the effect of alloying elements on mechanical properties (tensile properties and hardness) was evaluated. Properties were correlated to microstructural features originating from both solidification and solid state transformations. The trends found generally confirmed previous results regarding properties in graphitic cast irons.
3

Concerted Molecular Displacements in a Thermally-induced Solid-State Transformation in Crystals of DL-Norleucine

Anwar, Jamshed, Kendrick, John, Tuble, S.C. January 2007 (has links)
No / Martensitic transformations are of considerable technological importance, a particularly promising application being the possibility of using martensitic materials, possibly proteins, as tiny machines. For organic crystals, however, a molecular level understanding of such transformations is lacking. We have studied a martensitic-type transformation in crystals of the amino acid DL-norleucine using molecular dynamics simulation. The crystal structures of DL-norleucine comprise stacks of bilayers (formed as a result of strong hydrogen bonding) that translate relative to each other on transformation. The simulations reveal that the transformation occurs by concerted molecular displacements involving entire bilayers rather than on a molecule-by-molecule basis. These observations can be rationalized on the basis that at sufficiently high excess temperatures, the free energy barriers to concerted molecular displacements can be overcome by the available thermal energy. Furthermore, in displacive transformations, the molecular displacements can occur by the propagation of a displacement wave (akin to a kink in a carpet), which requires the molecules to overcome only a local barrier. Concerted molecular displacements are therefore considered to be a significant feature of all displacive transformations. This finding is expected to be of value toward developing strategies for controlling or modulating martensitic-type transformations.

Page generated in 0.1417 seconds