• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The energetis, dynamics and transport properties of CaF₂ : surface superionic conductivity

Ringer, Eric 05 1900 (has links)
No description available.
2

Microwave Properties of Liquids and Solids, Using a Resonant Microwave Cavity as a Probe

Hong, Ki H. 05 1900 (has links)
The frequency shifts and Q changes of a resonant microwave cavity were utilized as a basis for determining microwave properties of solids and liquids. The method employed consisted of varying the depth of penetration of a cylindrical sample of the material into a cavity operating in the TM0 1 0 Mode. The liquid samples were contained in a thin-walled quartz tube. The perturbation of the cavity was achieved by advancing the sample into the cavity along the symmetry axis by employing a micrometer drive appropriately calibrated for depth of penetration of the sample. A differentiation method was used to obtain the half-power points of the cavity resonance profile at each depth of penetration. The perturbation techniques for resonant cavities were used to reduce the experimental data obtained to physical parameters for the samples. The probing frequency employed was near 9 gHz.
3

Design of multilayer electrolyte for next generation lithium batteries

Mahootcheian Asl, Nina 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Rechargeable lithium ion batteries are widely used in portable consumer electronics such as cellphones, laptops, etc. These batteries are capable to provide high energy density with no memory effect and they have small self-discharge when they are not in use, which increases their potential for future electric vehicles. Investigators are attempting to improve the performance of these cells by focusing on the energy density, cost, safety, and durability. The energy density improves with high operation voltage and high capacity. Before any further development of high voltage materials, safe electrolytes with high ionic conductivity, wide electrochemical window, and high stability with both electrodes need to be developed. In this thesis a new strategy was investigated to develop electrolytes that can contribute to the further development of battery technology. The first study is focused on preparing a hybrid electrolyte, the combination of inorganic solid and organic liquid, for lithium based rechargeable batteries to illustrate the effect of electrode/electrolyte interfacing on electrochemical performance. This system behaves as a self-safety device at higher temperatures and provides better performance in comparison with the solid electrolyte cell, and it is also competitive with the pure liquid electrolyte cell. Then a multilayer electrolyte cell (MEC) was designed and developed as a new tool for investigating electrode/electrolyte interfacial reactions in a battery system. The MEC consists of two liquid electrolytes (L.E.) separated by a solid electrolyte (S.E.) which prevents electrolyte crossover while selectively transporting Li+ ions. The MEC successfully reproduced the performance of LiFePO4 comparable with that obtained from coin cells. In addition, the origin of capacity fading in LiNi0.5Mn1.5O4full-cell (with graphite negative electrode) was studied using the MEC. The performance of LiNi0.5Mn1.5O4 MEC full-cell was superior to that of coin full-cell by eliminating the Mn dissolution problem on graphite negative electrode as evidenced by transmission electron microscopy (TEM) analysis. The MEC can be a strong tool for identifying the electrochemical performances of future high voltage positive electrode materials and their electrode/electrolyte interfacial reactions. Finally, by employing the multilayer electrolyte concept, a new application will be introduced to recycle the lithium. This study demonstrates the feasibility of using water and the contents of waste Li-ion batteries for the electrodes in a Li-liquid battery system. Li metal was collected electrochemically from a waste Li-ion battery containing Li-ion source materials from the battery’s anode, cathode, and electrolyte, thereby recycling the Li contained in the waste battery at the room temperature.

Page generated in 0.0647 seconds