• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Influence of High Solids Loading and Scale on Coal Slurry Just-Suspended Agitation

Liu, Hong 26 August 2014 (has links)
No description available.
2

Novel application of membrane bioreactors in lignocellulosic ethanol production : simultaneous saccharification, filtration and fermentation (SSFF)

Ishola, Mofoluwake M. January 2014 (has links)
Biofuels production and utilisation can reduce the emission of greenhouse gases, dependence on fossil fuels and also improve energy security. Ethanol is the most important biofuel in the transportation sector; however, its production from lignocelluloses faces some challenges. Conventionally, lignocellulosic hydrolysis and fermentation has mostly been performed by separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF). SHF results in product inhibition during enzymatic hydrolysis and increased contamination risk. During SSF, suboptimal conditions are used and the fermenting organism cannot be reused. Bacterial contamination is another major concern in ethanol production, which usually results in low ethanol yield. In these studies, the above-mentioned challenges have been addressed. A novel method for lignocellulosic ethanol production ‘Simultaneous saccharification filtration and fermentation (SSFF)’ was developed. It circumvents the disadvantages of SSF and SHF; specifically, it uses a membrane for filtration and allows both the hydrolysis and fermentation to be carried out at different optimum conditions. SSFF also offers the possibility of cell reuse for several cultivations. The method was initially applied to pretreated spruce, with a flocculating strain of yeast Saccharomyces cerevisiae. SSFF was further developed and applied to pretreated wheat straw, a xylose rich lignocellulosic material, using encapsulated xylose fermenting strain of S. cerevisiae. High solids loading of 12% suspended solids (SS) was used to combat bacterial contamination and improve ethanol yield. Oil palm empty fruit bunch (OPEFB) was pretreated with fungal and phosphoric acid in order to improve its ethanol yield. An evaluation of biofuel production in Nigeria was also carried out. SSFF resulted in ethanol yield of 85% of the theoretical yield from pretreated spruce with the flocculating strain. Combination of SSFF with encapsulated xylose fermenting strain facilitated simultaneous glucose and xylose utilisation when applied to pretreated wheat straw; this resulted in complete glucose consumption and 80% xylose utilisation and consequently, 90% ethanol yield of the theoretical level. High solids loading of 12% SS of pretreated birch resulted in 47.2 g/L ethanol concentration and kept bacterial infection under control; only 2.9 g/L of lactic acid was produced at the end of fermentation, which lasted for 160 h while high lactic acid concentrations of 42.6 g/L and 35.5 g/L were produced from 10% SS and 8% SS, respectively. Phosphoric acid pretreatment as well as combination of fungal and phosphoric pretreatment improved the ethanol yield of raw OPEFB from 15% to 89% and 63% of the theoretical value, respectively. In conclusion, these studies show that SSFF can potentially replace the conventional methods of lignocellulosic ethanol production and that high solids loading can be used to suppress bacterial infections during ethanol productions, as well as that phosphoric acid pretreatment can improve ethanol yield from lignocellulosic biomass. / <p>Thesis for the degree of Doctor of Philosophy at the University of Borås to be publicly defended on 31 October 2014, 10.00 a. m. in room E310, University of Borås, Allégatan 1, Borås.</p>
3

Van Der Waals Interactions Based Rheological Analysis for Electrosterically Stabilized Nano-Sized Alpha Silicon Carbide-Lactobacillus Gg Dispersions

Manjooran, Navin Jose 02 February 2007 (has links)
Although enormous potential benefits are envisioned with the application of nanotechnology in conjunction with biological systems, interactions of nano particulate materials with biological materials is not well understood. The focus of this dissertation is to determine the mathematical relationships of the forces between nanoparticles and biological agents. The systems under investigation are the alpha-SiC/H2O/LGG polar based systems. The mathematical analysis for the surface forces, based on the attractive van der Waals forces for the alpha-SiC/H2O/alpha-SiC and alpha-SiC/H2O/LGG polar solvent based systems are presented and discussed. The rheological parameters including pH, zeta potential, shear rate, shear stress and viscosity that alter the dispersion mechanisms are also presented and discussed. The concurrence of the experimental analysis with the mathematical modeling is also presented. The rheological analysis in these systems for determining of the optimum amounts of dispersant, binder, plasticizer and solids loading using the Krieger-Dougherty fit and Liu's model are presented and discussed. Alpha-SiC/H2O/alpha-SiC and alpha-SiC/H2O/LGG polar solvent based samples were also fabricated to test for an application area of nano-bio technology: A novel nano and micro porous materials fabrication process. Porous materials are used for a variety of applications including insulation, filtration, catalytic substrates, textiles and consumer goods and accounts for billions of dollars in sales annually. Results from the alpha-SiC/H2O/alpha-SiC and alpha-SiC/H2O/LGG polar solvent based slip and freeze cast samples and their characterization using digital and electron microscopy are presented and discussed. Finally, the green and sintered density, porosity and strength of the alpha-SiC/H2O/alpha-SiC and alpha-SiC/H2O/LGG polar solvent based dispersion samples are determined and discussed. / Ph. D.

Page generated in 0.0918 seconds