Spelling suggestions: "subject:"aolute colvent binteractions"" "subject:"aolute colvent counteractions""
1 |
Solute-solvent Interactions in Folded and Unfolded ProteinsLee, Soyoung 31 August 2011 (has links)
This thesis is devoted to understanding solute-solvent interactions in folded and unfolded proteins. To this end, we have studied partial molar volume, Vo, and adiabatic compressibility, KoS, of 20 amino acid side chains using low weight molecular model compounds, N-acetyl amino acid amide and its derivatives, between 18 oC and 55 oC. We used our data to develop an additive scheme for calculating the partial specific volume and adiabatic compressibility of fully extended polypeptide chains as a function of pH and temperature. We compared our calculated volumetric characteristics of the fully extended conformations of apocytochrome c and apomyoglobin with the experimental values measured in neutral pH (for apocytochrome c) or acidic pH (for apomyoglobin). The comparison between the calculated and experimental volumetric characteristics suggested that neither apocytochrome c nor apomyoglobin are fully unfolded and retain solvent-inaccessible amino acid residues. To study cosolvent-solute interactions, we determined Vo and KoS of amino acid side chains and glycyl units as a function of urea concentration. We analyzed these data within the framework of a statistical thermodynamic formalism to determine the association constants, k, for the reaction in which urea binds to each of the amino acid side chains and the glycyl unit replacing two water molecules in solvation shell. Our determined k range from 0.04 to 0.39 M with the average of 0.16 ± 0.09 M. There was no apparent correlation between the values of k and the ratio of polar to nonpolar solvent accessible surface areas. This study supports a direct interaction model in which urea denatures a protein by concerted action via favorable interactions with a wide range of protein groups. In addition, we have presented buffer ionization effect on the volume of protein denaturation could be significant with the potential to affect not only its magnitude but also its sign using a pressure perturbation calorimetric technique. Our results identified buffer ionization as an important determinant of protein transition volume that needs to be carefully taken into account. Results described in this work provide fundamental understanding of solute-solvent interaction in both folded and unfolded proteins.
|
2 |
Solute-solvent Interactions in Folded and Unfolded ProteinsLee, Soyoung 31 August 2011 (has links)
This thesis is devoted to understanding solute-solvent interactions in folded and unfolded proteins. To this end, we have studied partial molar volume, Vo, and adiabatic compressibility, KoS, of 20 amino acid side chains using low weight molecular model compounds, N-acetyl amino acid amide and its derivatives, between 18 oC and 55 oC. We used our data to develop an additive scheme for calculating the partial specific volume and adiabatic compressibility of fully extended polypeptide chains as a function of pH and temperature. We compared our calculated volumetric characteristics of the fully extended conformations of apocytochrome c and apomyoglobin with the experimental values measured in neutral pH (for apocytochrome c) or acidic pH (for apomyoglobin). The comparison between the calculated and experimental volumetric characteristics suggested that neither apocytochrome c nor apomyoglobin are fully unfolded and retain solvent-inaccessible amino acid residues. To study cosolvent-solute interactions, we determined Vo and KoS of amino acid side chains and glycyl units as a function of urea concentration. We analyzed these data within the framework of a statistical thermodynamic formalism to determine the association constants, k, for the reaction in which urea binds to each of the amino acid side chains and the glycyl unit replacing two water molecules in solvation shell. Our determined k range from 0.04 to 0.39 M with the average of 0.16 ± 0.09 M. There was no apparent correlation between the values of k and the ratio of polar to nonpolar solvent accessible surface areas. This study supports a direct interaction model in which urea denatures a protein by concerted action via favorable interactions with a wide range of protein groups. In addition, we have presented buffer ionization effect on the volume of protein denaturation could be significant with the potential to affect not only its magnitude but also its sign using a pressure perturbation calorimetric technique. Our results identified buffer ionization as an important determinant of protein transition volume that needs to be carefully taken into account. Results described in this work provide fundamental understanding of solute-solvent interaction in both folded and unfolded proteins.
|
3 |
Nature Of Solute-Solvent Interaction : Effect Of Solvent Polarity On Excited State Structure Of 2,2,2-Trifluroacetophenone And Effect Of Hydrogen Bonding In Hydrated Electron Absorption SpectrumChowdhury, Brojokishore 11 1900 (has links)
In solution, the environment around the solute is determined solely by the solvent molecules, which are present closer to the solute. This interaction between solute and solvent shell is very crucial for equilibrium structure and reactivity of the solute. In the thesis, first we have investigated control of solvent polarity on the excited structure of 2,2,2 trifluroacetophenone and later effect of electronic excitation on the solvent shell organization has been described.
It has been reported in literature that the lowest energy triplet configuration of 2,2,2 trifluroacetophenone corresponds to n,π* state. There are some other reports in favor of the probable existence of 2,2,2 trifluroacetophenone in n,π* lowest triplet state. Thus, transient absorption and time resolved resonance Raman spectroscopic methods have been used along with theoretical calculations to investigate the discrepancy in the assignment of the lowest triplet state configuration It has been observed that the lowest triplet state of 2,2,2 trifluroacetophenone is indeed nπ* and there is a solvent polarity induced change in triplet state energy ordering and structure changes.
The absorption spectrum of hydrated electron is broad and structureless. So, it was though that the broadening feature could be attributed to homogeneous and inhomogeneous broadening. Transient resonance Raman spectrum of the water bending mode in presence of hydrated electron has been recorded at different excitation wavelengths. Interestingly, it has been observed that, peak position of water bending mode in presence of hydrated electron alters with change of excitation wavelength. A model has been proposed based on the experimental data.
|
4 |
Computational study of antimalarial pyrazole alkaloids from newbouldia laevis in vacuo and in solutionBilonda, Kabuyi Mireille 03 November 2014 (has links)
MSc (Chemistry) / Department of Chemistry
|
5 |
Computational study of antimalarial alkaloids of plant originBilonda, Kabuyi Mireille 15 May 2019 (has links)
Department of Chemistry / PhD (Chemistry) / This thesis is concerned with the computational study of naphthylisoquinoline alkaloids having antimalarial properties. The study was considered interesting because of the importance of gathering information on antimalarial molecules and because these molecules had not yet been studied computationally.
The alkaloids considered in this study had been isolated from tropical lianas belonging to the Dioncophyllaceae and Ancistrodaceae families. They comprise alkaloids with both monomeric and dimeric structures. The monomeric structures consist of one unit and the dimeric ones of two units, with each unit containing a naphthalene moiety and an isoquinoline moiety. 33 monomeric molecules were studied, which represent a large portion of all the monomeric naphthylisoquinoline alkaloids isolated so far. Two dimeric molecules with antimalarial activity were investigated, namely, jozimine A2 and mbandakamine A. A third dimeric molecule, with a structure close to that of jozimine A2 but different activity (michellamine A, anti-HIV) was also calculated for comparison purposes.
This work utilised electronic structures methods and involved the conformational study of all the molecules selected to identify the stabilising factors in vacuo and in solution. Two levels of theory (HF/ 6-31G (d,p) and DFT/B3LYP/ 6-31+G(d,p)) were utilised to compare their performance for compounds of this type, also in view of a future study extending to other compounds of the same class. The molecules were firstly studied in vacuo and secondly in three different solvents – chloroform, acetonitrile and water – characterized by different polarities and different H-bonding abilities. Quantum chemical calculations in solution were carried out using the Polarisable Continuum Model (PCM).
The main stabilizing factors are the presence and types of intramolecular hydrogen bonds (IHBs), which are the dominant factors, and also the mutual orientation of the moieties. The possible IHBs comprise OH⋯O (or OH⋯N and NH⋯O for mbandakamine A) and other H-bond types interactions such as OH⋯ and CH⋯O (or CH⋯O and CH⋯N for mbandakamine A). The moieties prefer to be perpendicular one to another, which is a common tendency of aromatic
vii
systems. In monomeric structures, there may be only one OH⋯O and possibly also one of each of the other two types of IHBs interactions. In dimeric structures, there may be up to four (five in mbandakamine A) OH⋯O IHBs simultaneously and also other H-bond type interactions.
The results provide a comprehensive picture of the molecular properties of these compounds, such as conformational preferences, dipole moments, HOMO-LUMO energy gaps, harmonic vibrational frequencies, solvent effect and influence of the solvent on molecular properties which respond to polarisation by the solvent. Altogether, these results may contribute to a better understanding of their biological activity and to the design of molecular structures with enhanced biological activity. This is the reason of focusing the efforts on the investigation of chemical and physical properties of these alkaloids molecules. / NRF
|
Page generated in 0.1497 seconds