• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The (n)-Solvable Filtration of the Link Concordance Group and Milnor's mu-Invariaants

January 2011 (has links)
We establish several new results about the ( n )-solvable filtration, [Special characters omitted.] , of the string link concordance group [Special characters omitted.] . We first establish a relationship between ( n )-solvability of a link and its Milnor's μ-invariants. We study the effects of the Bing doubling operator on ( n )-solvability. Using this results, we show that the "other half" of the filtration, namely [Special characters omitted.] , is nontrivial and contains an infinite cyclic subgroup for links with sufficiently many components. We will also show that links modulo (1)-solvability is a nonabelian group. Lastly, we prove that the Grope filtration, [Special characters omitted.] of [Special characters omitted.] is not the same as the ( n )-solvable filtration.
2

Lower order solvability of links

Martin, Taylor 16 September 2013 (has links)
The n-solvable filtration of the link concordance group, defined by Cochran, Orr, and Teichner in 2003, is a tool for studying smooth knot and link concordance that yields important results in low-dimensional topology. We focus on the first two stages of the n-solvable filtration, which are the class of 0-solvable links and the class of 0.5-solvable links. We introduce a new equivalence relation on links called 0-solve equivalence and establish both an algebraic and a geometric characterization 0-solve equivalent links. As a result, we completely characterize 0-solvable links and we give a classification of links up to 0-solve equivalence. We relate 0-solvable links to known results about links bounding gropes and Whitney towers in the 4-ball. We then establish a sufficient condition for a link to be 0.5-solvable and show that 0.5-solvable links must have vanishing Sato-Levine invariants.

Page generated in 0.0951 seconds