• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bioinformatische Methoden zur Identifizierung und Klassifizierung somatischer Mutationen in hämatologischen Erkrankungen / Bioinformatics approaches for the detection and classification of somatic mutations in hematological malignancies

Pischimarov, Jordan Ivanov January 2016 (has links) (PDF)
Die Sequenzierungstechnologien entwickeln sich stetig weiter, dies ermöglicht eine zuvor nicht erreichte Ausbeute an experimentellen Daten und auch an Neuentwicklungen von zuvor nicht realisierbaren Experimenten. Zugleich werden spezifische Datenbanken, Algorithmen und Softwareprogramme entwickelt, um die neu entstandenen Daten zu analysieren. Während der Untersuchung bioinformatischer Methoden für die Identifizierung und Klassifizierung somatischer Mutationen in hämatologischen Erkrankungen, zeigte sich eine hohe Vielfalt an alternativen Softwaretools die für die jeweiligen Analyseschritte genutzt werden können. Derzeit existiert noch kein Standard zur effizienten Analyse von Mutationen aus Next-Generation-Sequencing (NGS)-Daten. Die unterschiedlichen Methoden und Pipelines generieren Kandidaten, die zum größten Anteil in allen Ansätzen identifiziert werden können, jedoch werden Software spezifische Kandidaten nicht einheitlich detektiert. Um eine einheitliche und effiziente Analyse von NGS-Daten durchzuführen war im Rahmen dieser Arbeit die Entwicklung einer benutzerfreundlichen und einheitlichen Pipeline vorgesehen. Hierfür wurden zunächst die essentiellen Analysen wie die Identifizierung der Basen, die Alignierung und die Identifizierung der Mutationen untersucht. Des Weiteren wurden unter Berücksichtigung von Effizienz und Performance diverse verfügbare Softwaretools getestet, ausgewertet und sowohl mögliche Verbesserungen als auch Erleichterungen der bisherigen Analysen vorgestellt und diskutiert. Durch Mitwirken in Konsortien wie der klinischen Forschergruppe 216 (KFO 216) und International Cancer Genome Consortium (ICGC) oder auch bei Haus-internen Projekten wurden Datensätze zu den Entitäten Multiples Myelom (MM), Burkitt Lymphom (BL) und Follikuläres Lymphom (FL) erstellt und analysiert. Die Selektion geeigneter Softwaretools und die Generierung der Pipeline basieren auf komparativen Analysen dieser Daten, sowie auf geteilte Ergebnisse und Erfahrungen in der Literatur und auch in Foren. Durch die gezielte Entwicklung von Skripten konnten biologische und klinische Fragestellungen bearbeitet werden. Hierzu zählten eine einheitliche Annotation der Gennamen, sowie die Erstellung von Genmutations-Heatmaps mit nicht Variant-Calling-File (VCF)-Syntax konformen Dateien. Des Weiteren konnten nicht abgedeckte Regionen des Genoms in den NGS-Daten identifiziert und analysiert werden. Neue Projekte zur detaillierten Untersuchung der Verteilung von wiederkehrender Mutationen und Funktionsassays zu einzelnen Mutationskandidaten konnten basierend auf den Ergebnissen initiiert werden. Durch eigens erstellte Python-Skripte konnte somit die Funktionalität der Pipeline erweitert werden und zu wichtigen Erkenntnissen bei der biologischen Interpretation der Sequenzierungsdaten führen, wie beispielsweise zu der Detektion von drei neuen molekularen Subgruppen im MM. Die Erweiterungen, der in dieser Arbeit entwickelten Pipeline verbesserte somit die Effizienz der Analyse und die Vergleichbarkeit unserer Daten. Des Weiteren konnte durch die Erstellung eines eigenen Skripts die Analyse von unbeachteten Regionen in den NGS-Daten erfolgen. / The sequencing technologies, while still being under further development, render it possible to develop novel experiments and allow the generation of larger amounts of utilizable data. At the same time novel software tools, databases and algorithms are developed to analyze these larger amounts of data. The analysis of somatic mutations in hematological malignancies showed that a high variety of alternative software tools can be used for different analysis steps. Furthermore there is currently no standardized procedure for the efficient identification and analysis of mutations in NGS data. The different pipeline and methods are, for the most part, able to identify the same mutation candidates, however there are software specific candidates which are not called by all pipelines. The scope of this dissertation was therefore to develop a user-friendly pipeline which is able to call candidate mutations uniformly and efficiently. For this purpose necessary analysis steps including base calling, alignment generation and variant calling were investigated. Furthermore available software tools were tested and evaluated regarding their efficiency and performance. Possible improvements of these software tools and previously performed analysis are explained and discussed in this work. NGS data sets of the different cancer entities multiple myeloma (MM), Burkitt lymphoma (BL) and follicular lymphoma (FL) were generated and analyzed within the framework of cooperate projects like the International Cancer Genome Consortium (ICGC) and the Clinical Research Group 216 (KFO) as well as for internal projects. The development of the pipeline and selection of suitable software tools is based on the comparative analysis of the generated data sets, as well as previously described results and experiences in literature and forums. The selective development of certain python scripts enabled the evaluation of novel biological and clinical questions by standardizing gene names in the annotation step, generating heat- maps of non-standardized VCF-files as well as the identification and analysis of uncovered regions in NGS data sets. This work and the obtained results thereby provide the groundwork for further projects e.g. the analysis of the distribution of recurrent mutations or the functional analysis of specific mutation candidates. This extensions of the developed pipeline with python scripts helped to improve the efficiency and comparability of the NGS data. The interpretation of the NGS data with the extended script for example led to the discovery of three distinct molecular subgroups in MM. Furthermore the generation of the novel python scripts helped to analyze uncovered regions in the NGS data sets.
2

Etablierung von USP8 und USP48 Mutationen in Zelllinien für Cushing-Syndrom Analysen mittels CRISPR/Cas9 / Establishment of USP8 and USP48 mutations in cell lines for cushing-syndrom analyses with CRISPR/Cas9

Rehm, Alexandra January 2022 (has links) (PDF)
Morbus Cushing ist die häufigste Ursache für endogenes Cushing-Syndrom und führt auf Grund eines kortikotropen Hypophysenadenoms zu einem Glucocorticoid Überschuss und wiederum zu einer hohen Morbidität und Mortalität. Die Ursache hierfür sind unter anderem somatische Mutationen in den Deubiquitinasen USP8 und USP48. Das Ziel dieser Arbeit war es mittels der CRISPR/Cas9-Methode, die Mutationen USP8 und USP48 in Zelllinien zu etablieren und diese für Cushing-Syndrom Analysen zu verwenden. Hierfür wurden in dieser Arbeit gRNAs für USP8 und USP48 designt, welche anschließend in die humane embryonale Zelllinie HEK293AD Zellen transfiziert wurden. Diese Zellen wurden zu monoklonalen Zellen vereinzelt. Ziel war einen Knock-out von USP8 bzw. USP48 zu generieren. Es konnte ein erfolgreicher Zellklon generiert werden mit einem Knock-out von USP48. Ebenfalls konnte ein Genomediting von USP8 in Exon 20 durchgeführt werden. Zusammenfassend konnte die CRISPR/Cas9 Methode für ein M. Cushing-Zellmodells etabliert und eine gute Ausgangsbasis für weitere Experimente (z.B. ein gezielter Knock-in von USP8- und USP48- Mutationen) generiert werden. / Cushing disease (CD) is the most common reason for endogenous Cushing syndrome (CS). It is caused by corticotrope adenoma of the pituitary resulting in hypercortisolism that is associated with high morbidity and mortality. One of the underlying reasons are the activating mutations of the deubiquitinase USP8 and USP48. The objective of this work was to establish the USP8 and USP48 mutations in cell lines by the CRISPR/Cas9 method in order to use them for further CS analyses. Therefore, we designed gRNAs against USP8 and USP48 which were transfected into the human embryonal cell line of HEK293AD cells. Those cells were separated to generate monoclonal cell lines entailing the knock-out of either USP8 or USP48. We successfully provided a cell clone with a knock-out of USP48. Furthermore, we were able to edit the genome of USP8 in exon 20. In summary we were able to establish the CRISPR/Cas9 method for a CD cell model and provided a good baseline for further experiments (i.e., creating a knock-in of USP8 and USP48 mutations).

Page generated in 0.1268 seconds