• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation of Receptors in Neuronal Cilia with Development, Seizures, and Knockouts: Implications for Excitability

Shrestha, Jessica 08 1900 (has links)
Neurons commonly have a primary cilium, which is a non-motile organelle extending from the centrosome into the extracellular space. In most brain regions, neuronal cilia are enriched in either somatostatin receptor type 3 (SstR3) or melanin concentrating hormone receptor type 1 (MCHR1), or both. The present immunohistochemical study provides novel evidence that primary cilia regulate neuronal excitability via G-protein coupled receptors (GPCRs), and that their identity is governed by brain region and by competition, both in adulthood and in postnatal development. The hippocampus, which is particularly vulnerable to seizures, has opposing gradients of SstR3(+) and MCHR1(+) ciliary GPCRs. We hypothesized that there is a competition between these two ciliary GPCRs, which might take place on any level from gene expression to presence in the cilium. We examined whether receptor colocalization occurs transiently in development before ciliary GPCR dominance is established in neurons in the CNS. In postnatal CA1 and CA3, the first GPCR to appear in cilia was the one that will dominate in adults: MCHR1 in CA1 and SstR3 in CA3. Some days later, the second GPCR was expressed along with the first; dual-receptor cilia were the exclusive type until single-receptor cilia emerged again around P14. Single-receptor cilia then increased in numbers through adulthood. By identifying ciliary receptors that modulate seizure activity in mice, the present study lays a foundation for therapeutic approaches to reduce neuronal excitotoxicity underlying cell death in epilepsy, CNS injury, and neurodegenerative diseases.

Page generated in 0.0874 seconds