• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • Tagged with
  • 11
  • 11
  • 11
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The slow oscillation as an intrinsic and emergent property of the neocortex

Lemieux, Maxime 20 April 2018 (has links)
Le sommeil est présent chez pratiquement tous les animaux mais a atteint le plus haut niveau d’organisation chez les mammifères et les oiseaux avec le sommeil à ondes lentes et le sommeil paradoxal. De nombreuses études ont suggéré que le sommeil est généré par le cerveau pour ses propres besoins. L’oscillation lente est une caractéristique électroencéphalographique du sommeil à ondes lentes se traduisant par une alternance entre des états actif et silencieux du réseau thalamocortical. Elle a attiré le focus de plusieurs études étant donné son implication dans la plasticité synaptique et la consolidation de la mémoire. Plusieurs questions restent néanmoins en suspens. Quel est le rôle du thalamus dans l’oscillation lente? Quelles conditions mènent à l’état silencieux? Y a-t-il une variabilité entre espèces dans la synchronisation des ondes lentes? Dans la première étude de cette thèse, nous montrons que le thalamus est crucial à la genèse et à la propagation de l’oscillation lente alors que le cortex a la propriété intrinsèque de la restaurer en absence d’afférence fonctionnelle. Dans la seconde étude, nous nous intéressons aux conditions qui mènent à l’initiation des états silencieux dans le néocortex. Nous avons trouvé que l’inhibition dépendante du chlore est impliquée dans la terminaison des états actifs et que les afférences thalamocorticales jouent un rôle dans la synchronisation des états silencieux. Dans la troisième étude, nous comparons le niveau de synchronisation de l’oscillation lente dans les régions somatosensorielle et associative du néocortex chez le chat et le lapin. Nous rapportons que la synchronisation de l’oscillation lente corrèle avec le niveau de gyrification du cortex cérébral et le niveau hiérarchique dans le traitement de l’information d’une région néocorticale. Nous concluons que l’oscillation lente est une propriété intrinsèque du néocortex qui émerge du dialogue entre le néocortex et le thalamus, de la balance entre l’inhibition et l’excitation dans le réseau néocortical et dont la synchronisation a évolué avec le développement du cortex cérébral. / Sleep is a defining feature of animals that achieved the highest degree of organization in mammals with two distinct types of sleep: the slow wave sleep (SWS) and the rapid eye movements sleep. A large body of evidences suggests that the sleep is generated by the brain to fulfill its own need. Among the electroencephalographic signatures of SWS and anesthesia, the slow oscillation (< 1 Hz), a rhythmic alternation of active and silent states of the thalamocortical network, has attracted a lot of attention owing to its implication in synaptic plasticity and memory consolidation. Several questions remain unanswered on the mechanisms underlying the slow oscillation. For instance, what is the role of the thalamus in the slow oscillation? Which conditions lead to the onset of the silent state? Is there inter-species variability in the synchronization? In the first study of this thesis, we have investigated the respective contribution of the neocortex and the thalamus in the generation of the slow oscillation. We report that the thalamus is crucial to the generation and propagation of the active states of the slow oscillation while the neocortex has the intrinsic ability to recover the slow oscillation in absence of afferents. In the second study, we address the question regarding the conditions that lead to the onset of the silent state in the neocortex. We have found that chloride-mediated inhibition and functional thalamocortical afferents are involved in terminating the active states. In the third study, we compare the synchronization of the slow oscillation in the somatosensory and associative cortices of cats and rabbits. We have found that the synchronization of the slow waves correlates with the level of gyrification of the cerebral cortex and the hierarchical level of information processing of a neocortical region. We conclude that the slow oscillation is an intrinsic property of the neocortex that emerges from the dialogue between the neocortex and thalamus, the balance of inhibition and excitation in the neocortical network and that the synchronization of the slow oscillation evolved with the development of the cerebral cortex.
2

Origine des états actifs spontanés dans le néocortex pendant les oscillations du sommeil

Chauvette, Sylvain. January 1900 (has links) (PDF)
Thèse (M.Sc.)--Université Laval, 2006. / Titre de l'écran-titre (visionné le 28 mars 2007). Bibliogr.
3

Interactions neurones-glie : l'ACh et les glies lors de la transition du sommeil vers l'éveil in vivo

Seigneur, Josée 11 April 2018 (has links)
Cette étude résume l’historique de la découverte des glies, détaille leur morphologie et leur physiologie. Elle vise principalement à la compréhension des interactions complexes entre les neurones, les glies et l’apport en sang au cortex pendant la transition du sommeil à ondes lentes vers l’éveil in vivo chez des animaux anesthésiés et naturellement endormis. Nous effectuons des enregistrements intracellulaires simultanés de neurones et de glies corticaux, conjointement avec les mesures du débit sanguin cérébral, de la concentration extracellulaire de K+ et les potentiels de champs locaux sous anesthésie pendant l’activation corticale évoquée avec une stimulation électrique des noyaux cholinergiques ou lors de l’éveil naturel de l’animal. Nous suggérons que le résultat du comportement de la glie dépende de l’influence glutamatergique/GABAergique des neurones voisins, sur la modulation des voies de communications intergliales, et/ou sur le trafic ionique au travers des vaisseaux sanguins. / This study summarizes the history of the glial discovery, details their morphology and their physiology and aims at understanding complex interactions between cortical neurons, glia and blood supply during the transition from slow wave sleep to wakefulness in vivo in both anesthetized and naturally sleeping animals. We performed simultaneous intracellular recordings of cortical neurons and glia, together with measurements of cerebral blood flow, extracellular K+ concentrations and local field potentials under anesthesia, during elicited cortical activation with electric stimulation of cholinergic nuclei or under naturally wakefulness of the animal. We suggest that the outcome of the glial behavior depends on the glutamatergic/GABAergic influence of neighboring neurons, on the modulation of the interglial communication pathways, and/or on the ionic traffic across blood vessels.
4

Thalamic modulation of the cortisal slow oscillation

Ozur, Anastasiia 24 April 2018 (has links)
Il est bien établi que le thalamus joue un rôle crucial dans la génération de l'oscillation lente synchrone dans le cortex pendant le sommeil lent. La puissance des ondes lente / delta (0.2-4 Hz) est un indicateur quantifiable de la qualité du sommeil. La contribution des différents noyaux thalamiques dans la génération de l’activité à ondes lentes et dans sa synchronisation n'est pas connue. Nous émettons l'hypothèse que les noyaux thalamiques de premier ordre (spécifiques) influencent localement l’activité à ondes lentes dans les zones corticales primaires, tandis que les noyaux thalamiques d'ordre supérieur (non spécifiques) synchronisent globalement les activités à ondes lentes à travers de larges régions corticales. Nous avons analysé les potentiels de champ locaux et les activités de décharges de différentes régions corticales et thalamiques de souris anesthésiées alors qu'un noyau thalamique était inactivé par du muscimol, un agoniste des récepteurs GABA. Les enregistrements extracellulaires multi-unitaires dans les noyaux thalamiques de premier ordre (VPM) et d'ordre supérieur (CL) montrent des activités de décharges considérablement diminuées et les décharges par bouffées de potentiels d'action sont fortement réduites après inactivation. Nous concluons que l'injection de muscimol réduit fortement les activités de décharges et ne potentialise pas la génération de bouffées de potentiel d'action à seuil bas. L'inactivation des noyaux thalamiques spécifiques avec du muscimol a diminué la puissance lente / delta dans la zone corticale primaire correspondante. L'inactivation d'un noyau non spécifique avec le muscimol a significativement réduit la puissance delta dans l'ensemble du cortex étudié. Nos expériences démontrent que le thalamus a un rôle crucial dans la génération de l'oscillation lente corticale. / It is well established that thalamus plays a crucial role in the generation of the synchronous slow oscillation in the cortex during non-REM sleep. The slow/delta power (0.2-4 Hz) is the main measured factor of the quality of sleep. However, the contribution of different thalamic nuclei to the generation of the slow wave activities and its synchronization is not known. We hypothesized that the first-order (specific) thalamic nuclei provide a control of slow waves in primary cortical areas, while higher-order (non-specific) thalamic nuclei may synchronize the slow-wave activities across wide cortical regions. We analyzed local field potentials and spiking activities from different cortical and thalamic areas of anesthetized mice while a thalamic nucleus was inactivated by the GABA-agonist muscimol. Extracellular multiunit recordings in first-order (VPM) and higher-order (CL) thalamic nuclei show dramatically decreased spiking activity and strongly reduced burst firing after inactivation with muscimol. We conclude that the injection of muscimol strongly reduced the spiking activity and does not potentiate the generation of low-threshold spike mediated bursts. Inactivation of specific thalamic nuclei with muscimol decreased the slow/delta power in the corresponding primary cortical area. The inactivation of a non-specific nucleus with muscimol significantly reduced the delta power in all investigated cortical areas. Our experiments demonstrate that the thalamus is required for the fine tuning of the cortical slow oscillation.
5

Origine des états actifs spontanés dans le néocortex pendant les oscillations du sommeil

Chauvette, Sylvain 12 April 2018 (has links)
Le sommeil à ondes lentes est composé d’une alternance entre un état actif et un état silencieux dans le système thalamocortical. Les mécanismes produisant l’état actif et l’état silencieux sont inconnus. Afin d’étudier l’origine des états actifs, nous avons procédé à l’enregistrement intracellulaire simultané de 2 à 4 neurones dans un environnement local (< 200μm) et dans un environnement distant (jusqu’à 12mm). Aussi, nous avons procédé à l’enregistrement simultané de potentiels de champ locaux (jusqu’à 16). Ces expériences ont été menées chez le chat anesthésié et chez le chat non-anesthésié. Nous avons trouvé que les cellules à bouffées de potentiels d’action ainsi que les cellules situées profondément ont tendance à être les premières à entrer dans l’état actif. Aussi, nous avons observé une grande variabilité dans les délais d’activation des cellules et ce, qu’elles soient situées près l’une de l’autre ou qu’elles soient distantes. De plus, nous avons observé que le déclenchement de l’état silencieux était beaucoup plus synchrone que le déclenchement de l’état actif. / The slow-wave sleep is composed of an alternating period of active and silence state in the thalamocortical system. The mechanisms producing the active and silence state are unknown. In order to investigate the origin of active states, we performed simultaneous intracellular recording of 2 to 4 closely located (< 200μm) neurons and in a distant environment (up to 12mm). In addition, we performed simultaneous local field potentials (up to 16) recordings. These experiments were conducted on anesthetized and nonanesthetized cats. We found that Intrinsically-Bursting cells and deeply located cells have tendency to lead in the onset of the active state. We also observed a high, but similar, variability in the activation delay for closely located cells as well as for distantly located cells. In addition, we observed that the onset of silent state is much more synchronous than the onset of active state.
6

Slow-wave sleep : generation and propagation of slow waves, role in long-term plasticity and gating

Chauvette, Sylvain 19 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2012-2013. / Le sommeil est connu pour réguler plusieurs fonctions importantes pour le cerveau et parmi celles-ci, il y a le blocage de l’information sensorielle par le thalamus et l’amélioration de la consolidation de la mémoire. Le sommeil à ondes lentes, en particulier, est considéré être critique pour ces deux processus. Cependant, leurs mécanismes physiologiques sont inconnus. Aussi, la marque électrophysiologique distinctive du sommeil à ondes lentes est la présence d’ondes lentes de grande amplitude dans le potentiel de champ cortical et l’alternance entre des périodes d’activités synaptiques intenses pendant lesquelles les neurones corticaux sont dépolarisés et déchargent plusieurs potentiels d’action et des périodes silencieuses pendant lesquelles aucune décharge ne survient, les neurones corticaux sont hyperpolarisés et très peu d’activités synaptiques sont observées. Tout d'abord, afin de mieux comprendre les études présentées dans ce manuscrit, une introduction générale couvrant l'architecture du système thalamocortical et ses fonctions est présentée. Celle-ci comprend une description des états de vigilance, suivie d'une description des rythmes présents dans le système thalamocortical au cours du sommeil à ondes lentes, puis par une description des différents mécanismes de plasticité synaptique, et enfin, deux hypothèses sur la façon dont le sommeil peut affecter la consolidation de la mémoire sont présentées. Puis, trois études sont présentées et ont été conçues pour caractériser les propriétés de l'oscillation lente du sommeil à ondes lentes. Dans la première étude (chapitre II), nous avons montré que les périodes d'activité (et de silence) se produisent de façon presque synchrone dans des neurones qui ont jusqu'à 12 mm de distance. Nous avons montré que l'activité était initiée en un point focal et se propageait rapidement à des sites corticaux voisins. Étonnamment, le déclenchement des états silencieux était encore plus synchronisé que le déclenchement des états actifs. L'hypothèse de travail pour la deuxième étude (chapitre III) était que les états actifs sont générés par une sommation de relâches spontanées de médiateurs. Utilisant différents enregistrements à la fois chez des animaux anesthésiés et chez d’autres non-anesthésiés, nous avons montré qu’aucune décharge neuronale ne se produit dans le néocortex pendant les états silencieux du sommeil à ondes lentes, mais certaines activités synaptiques peuvent ii être observées avant le début des états actifs, ce qui était en accord avec notre hypothèse. Nous avons également montré que les neurones de la couche V étaient les premiers à entrer dans l’état actif pour la majorité des cycles, mais ce serait ainsi uniquement pour des raisons probabilistes; ces cellules étant équipées du plus grand nombre de contacts synaptiques parmi les neurones corticaux. Nous avons également montré que le sommeil à ondes lentes et l’anesthésie à la kétamine-xylazine présentent de nombreuses similitudes. Ayant utilisé une combinaison d'enregistrements chez des animaux anesthésiés à la kétamine-xylazine et chez des animaux non-anesthésiés, et parce que l'anesthésie à la kétamine-xylazine est largement utilisée comme un modèle de sommeil à ondes lentes, nous avons effectué des mesures quantitatives des différences entre les deux groupes d'enregistrements (chapitre IV). Nous avons trouvé que l'oscillation lente était beaucoup plus rythmique sous anesthésie et elle était aussi plus cohérente entre des sites d’enregistrements distants en comparaison aux enregistrements de sommeil naturel. Sous anesthésie, les ondes lentes avaient également une amplitude plus grande et une durée plus longue par rapport au sommeil à ondes lentes. Toutefois, les ondes fuseaux (spindles) et gamma étaient également affectées par l'anesthésie. Dans l'étude suivante (Chapitre V), nous avons investigué le rôle du sommeil à ondes lentes dans la formation de la plasticité à long terme dans le système thalamocortical. À l’aide de stimulations pré-thalamiques de la voie somatosensorielle ascendante (fibres du lemnisque médial) chez des animaux non-anesthésiés, nous avons montré que le potentiel évoqué enregistré dans le cortex somatosensoriel était augmenté dans une période d’éveil suivant un épisode de sommeil à ondes lentes par rapport à l’épisode d’éveil précédent et cette augmentation était de longue durée. Nous avons également montré que le sommeil paradoxal ne jouait pas un rôle important dans cette augmentation d'amplitude des réponses évoquées. À l’aide d'enregistrements in vitro en mode cellule-entière, nous avons caractérisé le mécanisme derrière cette augmentation et ce mécanisme est compatible avec la forme classique de potentiation à long terme, car il nécessitait une activation à la fois les récepteurs NMDA et des récepteurs AMPA, ainsi que la présence de calcium dans le neurone post-synaptique. iii La dernière étude incluse dans cette thèse (chapitre VI) a été conçue pour caractériser un possible mécanisme physiologique de blocage sensoriel thalamique survenant pendant le sommeil. Les ondes fuseaux sont caractérisées par la présence de potentiels d’action calcique à seuil bas et le calcium joue un rôle essentiel dans la transmission synaptique. En utilisant plusieurs techniques expérimentales, nous avons vérifié l'hypothèse que ces potentiels d’action calciques pourraient causer un appauvrissement local de calcium dans l'espace extracellulaire ce qui affecterait la transmission synaptique. Nous avons montré que les canaux calciques responsables des potentiels d’action calciques étaient localisés aux synapses et que, de fait, une diminution locale de la concentration extracellulaire de calcium se produit au cours d’un potentiel d’action calcique à seuil bas spontané ou provoqué, ce qui était suffisant pour nuire à la transmission synaptique. Nous concluons que l'oscillation lente est initiée en un point focal et se propage ensuite aux aires corticales voisines de façon presque synchrone, même pour des cellules séparées par jusqu'à 12 mm de distance. Les états actifs de cette oscillation proviennent d’une sommation de relâches spontanées de neuromédiateurs (indépendantes des potentiels d’action) et cette sommation peut survenir dans tous neurones corticaux. Cependant, l’état actif est généré plus souvent dans les neurones pyramidaux de couche V simplement pour des raisons probabilistes. Les deux types d’expériences (kétamine-xylazine et sommeil à ondes lentes) ont montré plusieurs propriétés similaires, mais aussi quelques différences quantitatives. Nous concluons également que l'oscillation lente joue un rôle essentiel dans l'induction de plasticité à long terme qui contribue très probablement à la consolidation de la mémoire. Les ondes fuseaux, un autre type d’ondes présentes pendant le sommeil à ondes lentes, contribuent au blocage thalamique de l'information sensorielle. / Sleep is known to mediate several major functions in the brain and among them are the gating of sensory information during sleep and the sleep-related improvement in memory consolidation. Slow-wave sleep in particular is thought to be critical for both of these processes. However, their physiological mechanisms are unknown. Also, the electrophysiological hallmark of slow-wave sleep is the presence of large amplitude slow waves in the cortical local field potential and the alternation of periods of intense synaptic activity in which cortical neurons are depolarized and fire action potentials and periods of silence in which no firing occurs, cortical neurons are hyperpolarized, and very little synaptic activities are observed. First, in order to better understand the studies presented in this manuscript, a general introduction covering the thalamocortical system architecture and function is presented, which includes a description of the states of vigilance, followed by a description of the rhythms present in the thalamocortical system during slow-wave sleep, then by a description of the mechanisms of synaptic plasticity, and finally two hypotheses about how sleep might affect the consolidation of memory are presented. Then, three studies are presented and were designed to characterize the properties of the sleep slow oscillation. In the first study (Chapter II), we showed that periods of activity (and silence) occur almost synchronously in neurons that are separated by up to 12 mm. The activity was initiated in a focal point and rapidly propagated to neighboring sites. Surprisingly, the onsets of silent states were even more synchronous than onsets of active states. The working hypothesis for the second study (Chapter III) was that active states are generated by a summation of spontaneous mediator releases. Using different recordings in both anesthetized and non-anesthetized animals, we showed that no neuronal firing occurs in the neocortex during silent states of slow-wave sleep but some synaptic activities might be observed prior to the onset of active states, which was in agreement with our hypothesis. We also showed that layer V neurons were leading the onset of active states in most of the cycles but this would be due to probabilistic reasons; these cells being equipped with the most numerous synaptic contacts among cortical neurons. We also showed that slow-wave sleep and ketamine-xylazine shares many similarities. v Having used a combination of recordings in ketamine-xylazine anesthetized and non-anesthetized animals, and because ketamine-xylazine anesthesia is extensively used as a model of slow-wave sleep, we made quantitative measurements of the differences between the two groups of recordings (Chapter IV). We found that the slow oscillation was much more rhythmic under anesthesia and it was also more coherent between distant sites as compared to recordings during slow-wave sleep. Under anesthesia, slow waves were also of larger amplitude and had a longer duration as compared to slow-wave sleep. However, spindles and gamma were also affected by the anesthesia. In the following study (Chapter V), we investigated the role of slow-wave sleep in the formation of long-term plasticity in the thalamocortical system. Using pre-thalamic stimulations of the ascending somatosensory pathway (medial lemniscus fibers) in non-anesthetized animals, we showed that evoked potential recorded in the somatosensory cortex were enhanced in a wake period following a slow-wave sleep episode as compared to the previous wake episode and this enhancement was long-lasting. We also showed that rapid eye movement sleep did not play a significant role in this enhancement of response amplitude. Using whole-cell recordings in vitro, we characterized the mechanism behind this enhancement and it was compatible with the classical form of long-term potentiation, because it required an activation of both NMDA and AMPA receptors as well as the presence of calcium in the postsynaptic neuron. The last study included in this thesis (Chapter VI) was designed to characterise a possible physiological mechanism of thalamic sensory gating occurring during sleep. Spindles are characterized by the presence of low-threshold calcium spikes and calcium plays a critical role in the synaptic transmission. Using several experimental techniques, we verified the hypothesis that these calcium spikes would cause a local depletion of calcium in the extracellular space which would impair synaptic transmission. We showed that calcium channels responsible for calcium spikes were co-localized with synapses and that indeed, local extracellular calcium depletion occurred during spontaneous or induced low-threshold calcium spike, which was sufficient to impair synaptic transmission. We conclude that slow oscillation originate at a focal point and then propagate to neighboring cortical areas being almost synchronous even in cells located up to 12 mm vi apart. Active states of this oscillation originate from a summation of spike-independent mediator releases that might occur in any cortical neurons, but happens more often in layer V pyramidal neurons simply due to probabilistic reasons. Both experiments in ketamine-xylazine anesthesia and non-anesthetized animals showed several similar properties, but also some quantitative differences. We also conclude that slow oscillation plays a critical role in the induction of long-term plasticity, which very likely contributes to memory consolidation. Spindles, another oscillation present in slow-wave sleep, contribute to the thalamic gating of information.
7

Interactions neurones-glie l'ACh et les glies lors de la transition du sommeil vers l'éveil in vivo /

Seigneur, Josée. January 1900 (has links) (PDF)
Thèse (M.Sc.)--Université Laval, 2004. / Titre de l'écran-titre (visionné le 29 novembre 2004). Bibliogr.
8

Modulation of intrinsic and synaptic excitability during sleep oscillations and electrographic seizures

Boucetta, Soufiane 11 April 2018 (has links)
Le présente mémoire fournit des nouvelles évidences montrant la modulation de l’excitabilité neuronale intrinsèque et synaptique, et la conséquence de cette modulation sur l’activité neuronale durant à la fois, les oscillations lentes du sommeil, et les crises électrographiques in vivo chez des animaux anesthésiés. Nous effectuons des enregistrements intracellulaires simultanés de neurones corticaux et des potentiels de champs locaux au niveau du gyrus suprasylvien à l’intérieur du cortex associatif pariétal (aires : 5, 7 et 21). Nous suggérons que la fluctuation de la concentration extracellulaire du calcium durant les oscillations lentes du sommeil module à la fois, l’excitabilité intrinsèque et synaptique des neurones corticaux, ainsi par conséquent, elle module affecte la relation d’input-output de ces neurones. L’apparition durant les oscillations lentes du sommeil, des crises de type Lennex-Gastaut qui sont générées corticalement, nous a permet d’étudier les propriétés spatio-temporelles des ondes paroxysmiques rapides associées avec ce type de crises. Nous suggérons que les ondes paroxysmiques rapides apparaissent comme des oscillations quasi-indépendantes même dans les localisations corticales voisines, suggérant leur origine focal. / The present memoir provides new evidences showing the modulation of intrinsic and synaptic excitability of cortical neurons, and the consequence of this modulation on neuronal activity during both slow sleep oscillations and electrographic seizures in vivo in anaesthetized animals. We performed simultaneous recordings of cortical neurons with local field potentials in suprasylvian gyrus within parietal associative cortex (area 5, 7 and 21). We suggest that the fluctuation of extacellular calcium concentration during slow sleep oscillations, modulates both intrinsic and synaptic excitability cortical neurons, thus by consequence modulates the input-output relationship of these neurons. The occurrence during slow-wave sleep of cortically generated Lennox-Gastaut type of seizures admits us to study the spatio-temporal properties of paroxysmal fast runs associated with this type of seizures. We suggest that fast runs appeared as quasi-independent oscillations even in neighbouring cortical locations suggesting their focal origin.
9

Serotonergic modulation of the states of vigilance

Potey, Julia 24 April 2019 (has links)
La sérotonine (5-HT) est un neuromodulateur qui joue un rôle essentiel dans la régulation des états de vigilance. Le déséquilibre des taux de sérotonine est impliqué dans l'étiologie des troubles psychiatriques, en particulier des troubles bipolaires et des troubles dépressifs majeurs, qui s'accompagnent également de troubles du sommeil. Basé sur ceci, nous avons émis l’hypothèse selon laquelle une réduction des niveaux de sérotonine devrait perturber le cycle éveil-sommeil. Pour tester cette hypothèse, nous avons utilisé des souris homozygotes (HO) knock-in TPH-2 produisant 20% du niveau normal de sérotonine (Beaulieu et al., 2008) et des souris de type sauvage (WT) avec un taux de sérotonine normal. Dans ces deux groupes, nous avons effectué des enregistrements électrophysiologiques chroniques de l'activité cérébrale dans trois aires corticales (préfrontales, motrices, rétrospléniales) et de l'hippocampe, en plus de l'EMG du cou. Les états de vigilance ont été détectés et la durée de chaque épisode de sommeil et d’éveil a été mesurée. Nous avons constaté que la réduction de sérotonine prolongeait la durée des épisodes de sommeil et de réveil. Les souris HO présentaient un sommeil continu plus long (combinant le sommeil à ondes lentes et le sommeil paradoxal) et des épisodes de réveil plus longs par rapport aux WT. Nous avons également évalué l'activité des ondes lentes dans toutes les zones corticales étudiées et notre étude a révélé que la puissance delta était augmentée chez les souris avec une réduction en sérotonine par rapport aux souris normales. Nous concluons que la réduction des niveaux de sérotonine mène à des états de vigilance plus consolidés. Nos résultats indiquent de manière surprenante que, la sérotonine influence de manière significative l’activité des ondes lentes corticales par augmentation de la puissance du delta. Nos résultats suggèrent également que les humains et les souris réagissent différemment à une réduction du taux de sérotonine. / The serotonin (5-HT) is a neuromodulator that plays a critical role in the regulation of states of vigilance. The disbalance in the levels of serotonin is implicated in the etiology of psychiatric disorders, particularly in bipolar disorder and major depressive disorder, that are also accompanied by sleep disturbances. Based on this, we hypothesized that a reduction in serotonin levels should lead to disruptions in the sleep-wake cycle in mice. To test this hypothesis, we used TPH-2 knock-in homozygote (HO) mice that produce 20% of normal level of serotonin (Beaulieu et al., 2008) and wild-type (WT) mice with normal serotonin level. In both of those groups, we conducted chronic electrophysiological recordings of the brain activity in three (prelimbic, motor, retrosplenial) cortical areas and in the hippocampus in addition to a neck EMG. The states of vigilance were detected, the number and duration of each sleep and wake episode was measured in addition to values of Delta power. We found that the reduction in serotonin levels leads to longer duration and decreased number of individual sleep and wake episodes. HO mice displayed longer continuous sleep (combining slow-wave sleep and REM sleep) and longer wake episodes as compared to WT. We also evaluated the slow-wave activity power in all investigated cortical areas and our study reveal that depletion in serotonin leads to higher values of Delta Power. We conclude that the decrease in serotonin levels cause more consolidated states of vigilance in addition to a reduced number of episodes compared to WT. Our results surprisingly indicate that serotonin significantly influence the cortical slow-wave activity power by increasing Delta power. Our results also suggest that humans and mice differently respond to a reduction in serotonin level.
10

The role of sleep and dreaming in the processing of episodic memory

Stenstrom, Philippe 06 1900 (has links)
La présente thèse examine les liens entre le sommeil, la mémoire épisodique et les rêves. Dans une première étude, nous utilisons les technologies de la réalité virtuelle (RV) en liaison avec un paradigme de privation de sommeil paradoxal et de collecte de rêve en vue d'examiner l'hypothèse que le sommeil paradoxal et le rêve sont impliqués dans la consolidation de la mémoire épisodique. Le sommeil paradoxal a été associé au rappel des aspects spatiaux des éléments émotionnels de la tâche RV. De la même façon, l'incorporation de la tâche RV dans les rêves a été associée au rappel des aspects spatiaux de la tâche. De plus, le rappel des aspects factuels et perceptuels de la mémoire épisodique, formé lors de la tâche VR, a été associé au sommeil aux ondes lentes. Une deuxième étude examine l'hypothèse selon laquelle une fonction possible du rêve pourrait être de créer de nouvelles associations entre les éléments de divers souvenirs épisodiques. Un participant a été réveillé 43 fois lors de l'endormissement pour fournir des rapports détaillés de rêves. Les résultats suggèrent qu'un seul rêve peut comporter, dans un même contexte spatiotemporel, divers éléments appartenant aux multiples souvenirs épisodiques. Une troisième étude aborde la question de la cognition lors du sommeil paradoxal, notamment comment les aspects bizarres des rêves, qui sont formés grâce aux nouvelles combinaisons d'éléments de la mémoire épisodique, sont perçus par le rêveur. Les résultats démontrent une dissociation dans les capacités cognitives en sommeil paradoxal caractérisée par un déficit sélectif dans l'appréciation des éléments bizarres des rêves. Les résultats des quatre études suggèrent que le sommeil aux ondes lentes et le sommeil paradoxal sont différemment impliqués dans le traitement de la mémoire épisodique. Le sommeil aux ondes lentes pourrait être implique dans la consolidation de la mémoire épisodique, et le sommeil paradoxal, par l'entremise du rêve, pourrais avoir le rôle d'introduire de la flexibilité dans ce système mnémonique. / The present dissertation examines relationships between sleep, episodic memory and dreaming. In Articles I and II we use a novel virtual reality (VR) task in conjunction with a rapid eye movement (REM) sleep deprivation (REMD) paradigm and dream sampling to examine the hypothesis that REM sleep and dreaming are involved in the consolidation of episodic memory. REM sleep was associated with the successful recall of the spatial aspects of emotionally charged elements of the VR task. Similarly, dreaming was associated with improved performance on the spatial aspects of the recall task. Recall of the factual and perceptual aspects of episodic memories formed with the VR task was associated with increased slow wave sleep (SWS) during the post-exposure night. Overall, the results suggest that SWS is associated with the perceptual and factual aspects of episodic memories while REM sleep is not, a finding which may relate to observations that REM sleep dreaming is composed of deconstructed fragments of loosely associated episodic memories. Study II examines the hypothesis that a function of dreaming may be to create new associations between previously unrelated memory items. A participant, highly trained in introspection and mentation reporting, was awakened 43 times during theta bursts at sleep onset and provided detailed reports of resulting imagery and associated memory sources. This technique provided evidence that elements of distally related memory sources are brought together in temporal and spatial proximity within a novel context provided by the dream, suggesting a role for dreaming in memory processing. To allow for this possibility, we speculate that dreaming experiences may be functionally equivalent to waking experiences in their ability to induce neural plasticity. Study III addresses an aspect of this functional equivalence by examining if dream bizarreness is incompatible with behavioral and cognitive features associated with waking state experience-driven plasticity, i.e., whether the dreamer can act upon, emote and be motivated towards an element of the dream that is bizarre and that violates basic assumptions of physical reality. The results demonstrate a dissociation in cognitive ability during dreaming characterized by a selective deficiency in appreciating bizarreness in face of a maintained ability for logical thought. This finding thus addresses the problem of the wake-like mind reflecting upon dream bizarreness and suggests that dreaming is a state in which the cognitive aspects associated with synaptic plasticity (attention, emotion and motivation associated with believing a situation to be reality) are present while allowing for the presentation of memory item combinations which may transcend the limits of physical reality. The results of the four studies are discussed in light of how REM and SWS sleep stages are differentially involved in specific aspects of episodic memory (episodic replay vs. episodic novelty) and the possible role that dreaming, as a driver of synaptic plasticity, may have in these relationships.

Page generated in 0.3206 seconds