• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • Tagged with
  • 54
  • 54
  • 54
  • 54
  • 54
  • 54
  • 54
  • 54
  • 54
  • 54
  • 54
  • 54
  • 54
  • 44
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Secret key generation from reciprocal spatially correlated MIMO channels

Jorswieck, Eduard A., Wolf, Anne, Engelmann, Sabrina January 2013 (has links)
Secret key generation from reciprocal multi-antenna channels is an interesting alternative to cryptographic key management in wireless systems without infrastructure access. In this work, we study the secret key rate for the basic source model with a MIMO channel. First, we derive an expression for the secret key rate under spatial correlation modelled by the Kronecker model and with spatial precoding at both communication nodes. Next, we analyze the result for uncorrelated antennas to understand the optimal precoding for this special case, which is equal power allocation. Then, the impact of correlation is characterized using Majorization theory. Surprisingly for small SNR, spatial correlation increases the secret key rate. For high SNR, the maximum secret key rate is achieved for uncorrelated antennas. The results indicate that a solid system design for reciprocal MIMO key generation is required to establish the secret key rate gains.
42

HAEC News

06 September 2013 (has links)
Newsletter des Sonderforschungsbereichs 912 "Highly Adaptive Energy-Efficient Computing" (HAEC)
43

Static Partial Order Reduction for Probabilistic Concurrent Systems

Fernández-Díaz, Álvaro, Baier, Christel, Benac-Earle, Clara, Fredlund, Lars-Åke January 2012 (has links)
Sound criteria for partial order reduction for probabilistic concurrent systems have been presented in the literature. Their realization relies on a depth-first search-based approach for generating the reduced model. The drawback of this dynamic approach is that it can hardly be combined with other techniques to tackle the state explosion problem, e.g., symbolic probabilistic model checking with multi-terminal variants of binary decision diagrams. Following the approach presented by Kurshan et al. for non-probabilistic systems, we study partial order reduction techniques for probabilistic concurrent systems that can be realized by a static analysis. The idea is to inject the reduction criteria into the control flow graphs of the processes of the system to be analyzed. We provide the theoretical foundations of static partial order reduction for probabilistic concurrent systems and present algorithms to realize them. Finally, we report on some experimental results.
44

Efficient information leakage neutralization on a relay-assisted multi-carrier interference channel

Ho, Zuleita K.-M., Jorswieck, Eduard A., Engelmann, Sabrina January 2013 (has links)
In heterogeneous dense networks where spectrum is shared, users privacy remains one of the major challenges. When the receivers are not only interested in their own signals but also in eavesdropping other users' signals, the cross talk becomes information leakage.We propose a novel and efficient secrecy rate enhancing relay strategy EFFIN for information leakage neutralization. The relay matrix is chosen such that the effective leakage channel (spectral and spatial) is zero. Thus, it ensures secrecy regardless of receive processing employed at eavesdroppers and does not rely on wiretaps codes to ensure secrecy, unlike other physical layer security techniques such as artificial noise. EFFIN achieves a higher sum secrecy rate over several state-of-the-art baseline methods.
45

Comparison of LDPC Block and LDPC Convolutional Codes based on their Decoding Latency

Hassan, Najeeb ul, Lentmaier, Michael, Fettweis, Gerhard P. January 2012 (has links)
We compare LDPC block and LDPC convolutional codes with respect to their decoding performance under low decoding latencies. Protograph based regular LDPC codes are considered with rather small lifting factors. LDPC block and convolutional codes are decoded using belief propagation. For LDPC convolutional codes, a sliding window decoder with different window sizes is applied to continuously decode the input symbols. We show the required Eb/N0 to achieve a bit error rate of 10 -5 for the LDPC block and LDPC convolutional codes for the decoding latency of up to approximately 550 information bits. It has been observed that LDPC convolutional codes perform better than the block codes from which they are derived even at low latency. We demonstrate the trade off between complexity and performance in terms of lifting factor and window size for a fixed value of latency. Furthermore, the two codes are also compared in terms of their complexity as a function of Eb/N0. Convolutional codes with Viterbi decoding are also compared with the two above mentioned codes.
46

Capacity of Communications Channels with 1-Bit Quantization and Oversampling at the Receiver

Krone, Stefan, Fettweis, Gerhard January 2012 (has links)
Communications receivers that rely on 1-bit analogto-digital conversion are advantageous in terms of hardware complexity and power dissipation. Performance limitations due to the 1-bit quantization can be tackled with oversampling. This paper considers the oversampling gain from an information-theoretic perspective by analyzing the channel capacity with 1-bit quantization and oversampling at the receiver for the particular case of AWGN channels. This includes a numerical computation of the capacity and optimal transmit symbol constellations, as well as the derivation of closed-form expressions for large oversampling ratios and for high signal-to-noise ratios of the channel.
47

Communications with 1-Bit Quantization and Oversampling at the Receiver: Benefiting from Inter-Symbol-Interference

Krone, Stefan, Fettweis, Gerhard January 2012 (has links)
1-bit analog-to-digital conversion is very attractive for low-complexity communications receivers. A major drawback is, however, the small spectral efficiency when sampling at symbol rate. This can be improved through oversampling by exploiting the signal distortion caused by the transmission channel. This paper analyzes the achievable data rate of band-limited communications channels that are subject to additive noise and inter-symbol-interference with 1-bit quantization and oversampling at the receiver. It is shown that not only the channel noise but also the inter-symbol-interference can be exploited to benefit from oversampling.
48

Reduced Complexity Window Decoding Schedules for Coupled LDPC Codes

Hassan, Najeeb ul, Pusane, Ali E., Lentmaier, Michael, Fettweis, Gerhard P., Costello, Daniel J. January 2012 (has links)
Window decoding schedules are very attractive for message passing decoding of spatially coupled LDPC codes. They take advantage of the inherent convolutional code structure and allow continuous transmission with low decoding latency and complexity. In this paper we show that the decoding complexity can be further reduced if suitable message passing schedules are applied within the decoding window. An improvement based schedule is presented that easily adapts to different ensemble structures, window sizes, and channel parameters. Its combination with a serial (on-demand) schedule is also considered. Results from a computer search based schedule are shown for comparison.
49

Non-regenerative Two-Hop Wiretap Channels using Interference Neutralization

Gerbracht, Sabrina, Jorswieck, Eduard A., Zheng, Gan, Ottersten, Björn January 2012 (has links)
In this paper, we analyze the achievable secrecy rates in the two-hop wiretap channel with four nodes, where the transmitter and the receiver have multiple antennas while the relay and the eavesdropper have only a single antenna each. The relay is operating in amplify-and-forward mode and all the channels between the nodes are known perfectly by the transmitter. We discuss different transmission and protection schemes like artificial noise (AN). Furthermore, we introduce interference neutralization (IN) as a new protection scheme. We compare the different schemes regarding the high-SNR slope and the high-SNR power offset and illustrate the performance by simulation results. It is shown analytically as well as by numerical simulations that the high SNR performance of the proposed IN scheme is better than the one of AN.
50

HAEC News

January 2012 (has links)
No description available.

Page generated in 0.0745 seconds