• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Compressible Flow Characterization Using Non-Intrusive Acoustic Measurements

Otero Jr, Raul 10 October 2017 (has links)
Non-intrusive acoustic instruments that measure fluid velocity and temperature have been restricted to low subsonic Mach number applications due to increased complexities associated with acoustic refraction, low signal-to-noise ratios, and a limited range of practical applications. In the current work, the use of acoustics for non-intrusive flow monitoring in compressible flows is explored and a novel sonic anemometry and thermometry (SAT) technique is developed. Using multiple arrangements of SAT equipment, a compressible acoustic tomography technique was also developed to resolve flow non-uniformities. Three validation experiments were used to investigate the novel SAT technique performance, and a fourth validation experiment was used to explore compressible flow tomography capabilities. In the first experiment, an unheated jet was used to verify that the acoustic technique could measure fluid velocities in high subsonic Mach number flows. The application demonstrated velocity root mean square (RMS) errors of 9 m/s in unheated jet flows up to Mach 0.83. Next, a heated jet facility was used to assess the impact of fluid temperature on measurement accuracy. Using jet Mach numbers up to 0.7 and total temperatures up to 700 K, RMS velocity and static temperature errors up to 8.5 m/s (2.4% of maximum jet velocity) and 23.3 K (3.3% of total temperature) were observed. Finally, the acoustic technique was implemented at the exhaust of a JT15D-1A turbofan engine to investigate technique sensitivity to bypass engine conditions. A mass flow rate and thrust estimation approach was developed and RMS errors of 1.1 kg/s and 200 N were observed in conditions up to an exhaust Mach number of 0.48. Since modern acoustic tomography techniques require an incompressible flow assumption for velocity detection, advancements were made to extend acoustic tomography methods to compressible flow scenarios for the final experiment. The approach was tested in the heated jet operating at Mach 0.48 and 0.72 (total temperature of 675 K, approximately 2.25 times the ambient) and numerical simulations were used to identify technique sensitivity to input variables and system design. This research marks the first time an acoustic method has been used to estimate compressible flow velocities and temperatures. / Ph. D. / Traditionally, intrusive instruments such as pressure and temperature probes have been used to measure flow conditions. While these instruments are effective and widely used, they generate turbulence and produce blockage which could be undesirable in a variety of applications. In the current work, the use of non-intrusive acoustic measurements for flow velocity and temperature detection in compressible flow (Mach>0.3) environments was investigated. First, a novel acoustic technique was developed for compressible flow applications. The new approach was used to measure jet velocities and temperatures in compressible flow conditions for the first time. Later, this technique was implemented at the exhaust of a turbofan gas turbine engine. The results of this experiment demonstrated that acoustic measurements could be used to estimate engine mass flow rate and thrust in a non-intrusive manner. The final portion of this research focuses on the non-intrusive detection of fluid velocity and temperature gradients. Since existing acoustic techniques require an incompressible flow assumption, a novel approach was identified and used to perform a validation experiment. The experimental findings confirmed that non-intrusive acoustic measurements could be used to measure velocity and temperature gradients in compressible flow environments.

Page generated in 0.0648 seconds