Spelling suggestions: "subject:"root oxidation"" "subject:"foot oxidation""
1 |
Surface Intermediates, Mechanism, and Reactivity of Soot OxidationWilliams, Shazam 26 February 2009 (has links)
Factors that may govern diesel particulate matter (DPM) oxidation at low temperatures (~200°C) were studied using reactivity and TP-ToFSIMS analysis. Best-case scenarios that give maximum gasification rates were determined for DPM impregnated with KOH and non-catalyzed DPM using temperature programmed oxidation and isothermal experiments. Conditions of intimate catalyst-carbon contact (K/C molar ratio=1/50) and high NO2 concentrations (1%) to improve the reactivity of the carbon reactive sites were unable to meet the steady state gasification rate needed for particulate filter regeneration for a modern diesel engine at 200°C. Oxygen-free thermal annealing (>500°C) caused reactivity losses of a maximum of 40% that correspond to changes to surface morphology and/or concentration of oxygen-containing functional groups.
TP-ToFSIMS identified surface functional group changes with temperature on non-dosed and NOX pre-dosed (1.5%NO, 1%NO2, 4.5%O2, balance helium) diesel soot and sucrose char. Detailed analysis of the NOX dosed sucrose char spectra using both inspection and principal component analysis techniques revealed that the 1200 ion fragments created could be reduced to five sets of ions that are chemically and kinetically distinct. These sets presumably represent surface functional groups on the carbon. For example, Set IV may represent carboxylic acid, lactone, or carboxylic anhydride functional groups. Based on these results a mechanism for the surface reaction of NO2 with carbon under vacuum conditions was postulated. At temperatures less than 200°C the ion fragments contain primarily carbon-NO2 type ions. As temperature increases between 200 and 400°C the ion fragments are primarily carbon-NO and carbon-N type fragments. At higher temperatures (>500°C) the surface is enriched with nitrogen containing functional groups. A surface reaction mechanism is proposed where NO2 is bonded to an armchair site and with increasing temperatures and molecular rearrangements the N is incorporated into the carbon ring. The initial surface composition of NOx containing functional groups changes within the area of relevance of low temperature soot regeneration (i.e. between 25° and 200°C). Further studies are needed to understand the effect of N-incorporation on carbon reactivity. No rate processes either in reactor studies or based on surface functional groups met the rate criteria for low temperature DPM oxidation.
|
2 |
Surface Intermediates, Mechanism, and Reactivity of Soot OxidationWilliams, Shazam 26 February 2009 (has links)
Factors that may govern diesel particulate matter (DPM) oxidation at low temperatures (~200°C) were studied using reactivity and TP-ToFSIMS analysis. Best-case scenarios that give maximum gasification rates were determined for DPM impregnated with KOH and non-catalyzed DPM using temperature programmed oxidation and isothermal experiments. Conditions of intimate catalyst-carbon contact (K/C molar ratio=1/50) and high NO2 concentrations (1%) to improve the reactivity of the carbon reactive sites were unable to meet the steady state gasification rate needed for particulate filter regeneration for a modern diesel engine at 200°C. Oxygen-free thermal annealing (>500°C) caused reactivity losses of a maximum of 40% that correspond to changes to surface morphology and/or concentration of oxygen-containing functional groups.
TP-ToFSIMS identified surface functional group changes with temperature on non-dosed and NOX pre-dosed (1.5%NO, 1%NO2, 4.5%O2, balance helium) diesel soot and sucrose char. Detailed analysis of the NOX dosed sucrose char spectra using both inspection and principal component analysis techniques revealed that the 1200 ion fragments created could be reduced to five sets of ions that are chemically and kinetically distinct. These sets presumably represent surface functional groups on the carbon. For example, Set IV may represent carboxylic acid, lactone, or carboxylic anhydride functional groups. Based on these results a mechanism for the surface reaction of NO2 with carbon under vacuum conditions was postulated. At temperatures less than 200°C the ion fragments contain primarily carbon-NO2 type ions. As temperature increases between 200 and 400°C the ion fragments are primarily carbon-NO and carbon-N type fragments. At higher temperatures (>500°C) the surface is enriched with nitrogen containing functional groups. A surface reaction mechanism is proposed where NO2 is bonded to an armchair site and with increasing temperatures and molecular rearrangements the N is incorporated into the carbon ring. The initial surface composition of NOx containing functional groups changes within the area of relevance of low temperature soot regeneration (i.e. between 25° and 200°C). Further studies are needed to understand the effect of N-incorporation on carbon reactivity. No rate processes either in reactor studies or based on surface functional groups met the rate criteria for low temperature DPM oxidation.
|
3 |
Diesel soot oxidation under controlled conditionsSong, Haiwen January 2003 (has links)
In order to improve understanding of diesel soot oxidation, an experimental rig was designed and set up, in which the soot oxidation conditions, such as temperature, oxygen partial pressure, and CO2 partial pressure, could be varied independently of each other. The oxidizing gas flow in the oxidizer was under laminar condition. This test rig comprised a naturally-aspirated single cylinder engine which acted as the soot generator, and a separate premixed oxidation burner system in which soot extracted from the engine was oxidized under controlled conditions. Diesel soot was extracted from the engine exhaust pipe and from the engine pre-combustion chamber, and the soot-laden gas was then conveyed to the burner where it was oxidized. The burner was positioned vertically and it had a flat flame whose thickness was only a few millimetres. The hot gases from the flame flew upwards through a quartz transparent tube which acted as the soot oxidation duct. The soot-laden gas from the engine was premixed with the feedgas (itself a premixed mixture of methane, air, oxygen, and nitrogen) to the burner. The soot particles passed vertically through the flame front and continued burning in the post-flame gas flowing through the quartz tube oxidation duct. The oxygen concentration and temperature of the post-flame soot oxidation gas were controllable by adjusting the flowrate and composition of the burner feedgas. Diesel soot particles were sampled at different heights along the centreline of the quartz tube above the burner. Profiles of oxygen concentration, temperature, and soot particle velocity in the oxidation zone were thus measured. Morphology and size distributions of the sampled diesel soot particles were analyzed by means of Transmission Electron Microscopy (TEM) and a computer software called ImagePro Plus. Subsequently, the specific surface oxidation rates of the soot particles were worked out based on soot particle size distributions. The TEM micrographs obtained in this study showed that the diesel soot agglomerates existed in forms of clusters and chains, each containing between a small number and thousands of individual, mostly spherical tiny particles. Of order 97% of the individual spherical particles (spherules) had a size range from 10 to 80 nm. Occasionally, individual spherules of about 150 nm in diameter could be observed. The diesel soot particles sampled from the pre-chamber of the engine had different size distributions from those sampled from the exhaust of the engine, indicating that the soot underwent an oxidation process in the combustion chamber. Soot oxidation experiments were performed in the burner post-flame gas under oxygen partial pressures ranging from 0.010 to 0.050 atm and temperatures from 1520 to 1820 K. The test results showed that the oxidation rates of the diesel soot extracted from the diesel engine were generally lower than those predicted by the well-known Nagle and Strickland-Constable formula; however, the measured oxidation rates were higher than the predictions made with another well-known formula - the Lee formula. The soot extracted from the engine pre-chamber appeared not to oxidize as fast as the soot extracted from the exhaust of the engine. CO2 gas injection to the post-flame oxidation gas at constant oxygen partial pressure and oxidation temperature seemed to have accelerated the diesel soot oxidation rate. Based on the experimental results of this study and the results of other researchers, modifications to the Nagle and Strickland-Constable formula and to the Lee formula were accomplished. Also, an empirical expression, as an alternative to semi-empirical formulae, was worked out and presented in the thesis.
|
4 |
Numerical simulation of continuously regenerating diesel particulate filterYamauchi, Kazuki, Yamamoto, Kazuhiro January 2013 (has links)
No description available.
|
5 |
Design and development of a microwave enhanced diesel soot oxidation systemRankin, Bret A. January 1999 (has links)
Thesis (M.S.)--West Virginia University, 1999. / Title from document title page. Document formatted into pages; contains xiv, 347 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 272-276).
|
6 |
Investigation Of The Effect Of Oxidation Filters On The Particulate Emissions Of Diesel EnginesCerit, Ersen Recep 01 September 2006 (has links) (PDF)
Oxidation filters are used to decrease particulate emissions commonly. In this study, design of a particulate trap to produce an alternative, low cost filter has been aimed. An experimental setup has been installed according to standards to carry out tests of these designed filters. Electronic measurement and control systems have been attached to this setup to increase efficiency of experiments.
Two filter designs have been used in the experiments. First design consists of aluminum wire cloth. Second design is sheet metal structure, which includes three longitudinal cells. Metal chip is used as filter material. Empty filter tests have been performed firstly, and then experiments have been repeated with aluminum, iron, and copper chip addition in filter.
Copper chip test results are better than other metal chip for first experiments. Afterwards, experiments have been repeated with varying copper chip amount. Suitable copper chip amount was determined based on fuel consumption rate of the engine.
As a result, designed filter reduce the particulate emissions with high efficiency. Although, carbon monoxide, and carbon dioxide gaseous emissions increase with designed filter, hydro carbon emissions decrease.
|
7 |
Diesel Soot Oxidation Catalyst Filter System DesignGenc, Volkan Eyup 01 July 2005 (has links) (PDF)
The objective of this study was onboard testing of a mixed metal oxide diesel soot oxidation catalyst composing of oxides of lead and cobalt previously developed in our lab, by mounting a diesel particulate filter (DPF), which is coated with this catalyst, to the exhaust stream of a diesel vehicle.
Commercial wall flow type DPF&rsquo / s (Corning EX-80) were coated with the catalyst by a slurry wash-coating procedure and then mounted on the exhaust stream of a diesel light duty vehicle (LDV) provided by TOFAS (FIAT Doblo 1.9 JTD). These vehicles were driven on the rollers of the chassis dynamometer at constant speed and gear for two different loading conditions and on a standard driving cycle (NEDC) in the Test and Emission Laboratory of TOFAS-FIAT. The exhaust gases were analyzed for NOx, CO, CO2, THC and PM. The pressure drop caused by the filter was monitored during these tests as an indication of soot accumulation on the filter with the help of pressure sensors placed before and after the filter. Also temperatures before, inside and after the filter were monitored by means of thermocouples. Three different filters were tested in this manner: (1) Monocoated (CoOx), (2) Sequential PbOx coated over CoOx (PbOx/CoOx), (3) Simultaneously coated (PbCoOx). Also tests with the uncoated filter were performed to determine the pressure drops as a result of non-catalytic soot oxidation. The performances of the catalytic filters were evaluated by determining the temperature at which the soot oxidation rate on the filter equals the soot production rate in the engine (balance point temperature-Tbal). This temperature was used for comparing the catalytic activity of the supported catalyst with that of the powder form tested in the laboratory, i. e. Tpeak.
The results of the onboard test were in parallel with the previous laboratory studies with similar catalytic activity temperatures. The continuous regeneration temperatures (Tbal) obtained in onboard tests with PbOx/CoOx and PbCoOx filters of about 370oC, which was close to the values attained in the lab study with the same mixed metal oxide catalyst having a Tpeak value of 385oC. Also the PM emissions during the tests were complying with the current EURO-IV emission limits.
|
8 |
RADIATION HEAT TRANSFER IN DIRECT-INJECTION DIESEL ENGINESVillalta Lara, David 04 January 2019 (has links)
En las últimas décadas, la investigación en motores de combustión ha estado enfocada fundamentalmente en la reducción de las emisiones contaminantes y la eficiencia de los mismos. Estos hechos junto con un aumento de la concienciación sobre el cambio climático han llevado a un aumento en la importancia de la eficiencia térmica respecto a otros criterios en el diseño de motores de combustión interna (MCIA). Para alcanzar este objetivo, existen diferentes estrategias a aplicar. En concreto, la transferencia de calor a las paredes de la cámara de combustión puede ser considerada como una de las principales fuentes de disminución de la eficiencia indicada. En particular, en los modernos motores diésel de inyección directa, la emisión de radiación de las partículas de hollín puede constituir un componente importante de las pérdidas de eficiencia. En este contexto se enmarca el objetivo principal de la tesis: contribuir a la comprensión de la transferencia de calor por radiación en la combustión diésel de inyección directa junto con la mejora del conocimiento en el proceso de formación-oxidación de hollín. El trabajo se ha basado tanto en resultados experimentales mediante la aplicación de técnicas ópticas en diversas tipologías de motor como en resultados simulados a partir de modelos unidimensionales validados.
En la primera parte de resultados experimentales, se ha evaluado la cantidad de energía por radiación respecto a la energía química del combustible mediante la aplicación de una sonda optoelectrónica (basada en la técnica del 2-Colores) tanto en un motor óptico DI como en motor poli-cilíndrico DI de producción. En este estudio se han obtenido valores de intensidad espectral emitida por el hollín y posteriormente, la radiación total emitida por las partículas de hollín en todo el espectro.
Como se ha citado anteriormente, las partículas de hollín son las principales responsables de la transferencia de calor por radiación, además de uno de los principales agentes contaminantes emitidos por los motores diésel. Las emisiones de hollín son el resultado de dos procesos antagonistas: la formación y oxidación del hollín. Los mecanismos de formación de hollín se discuten extensamente en la literatura. Sin embargo, existen deficiencias en cuanto al conocimiento de la oxidación de hollín. Por lo tanto, el objetivo de esta sección ha sido evaluar el impacto del proceso de mezcla y la temperatura del gas sobre el proceso de oxidación de hollín durante la última parte de la combustión bajo condiciones reales de operación.
Finalmente, y en base a los resultados y conocimientos adquiridos hasta el momento, se ha desarrollado un modelo capaz de predecir las pérdidas de calor por radiación para un chorro diésel. El modelo está basado en tres sub-modelos: modelo de chorro, el cual analiza y caracteriza la estructura interna del chorro en términos de mezcla y combustión en un proceso de inyección con resolución temporal y espacial. Un modelo de hollín, en el que los resultados se justifican en función de procesos de formación y oxidación del hollín. La cohesión de estos dos sub-modelos se utiliza para obtener los valores de entrada al modelo de radiación, con el que se obtiene los valores de transferencia de calor por radiación para una llama diésel. / En els últims anys, la recerca en motors de combustió ha estat focalitzada principalment en la reducció de les emissions contaminants i la millora de la eficiència. Aquests fets afegits al fet del augment de la conscienciació del canvi climàtic han impulsat el interés per incrementar la eficiència tèrmica per damunt de altres criteris en el disseny de motors de combustió interna alternatius (MCIA). Per aconseguir aquest objectiu, existixen diferents estratègies a aplicar. Concretament, la transferència de calor a les parets de la càmera de combustió pot ser considerada un dels principals focs de reducció de eficiència indicada. En particular, en els moderns motors dièsel de injecció directa, la emissió de radiació de les partícules de sutja pot constituir un component important de les pèrdues de eficiència. En aquest context s'emmarca el objectiu principal de la tesis: contribuir a la comprensió de la transferència de calor per radiació en la combustió dièsel de injecció directa i la millora del coneixement del procés de formació-oxidació de la sutja. El treball esta basat tant en resultats experimentals mediant l'aplicació de tècniques òptiques en diverses tipologies de motor com en resultants simulats a partir de models unidimensionals validats.
En la primera part dels resultats experimentals, s'ha avaluat la quantitat de energia per radiació respecte a la energia química del combustible mediant la aplicació de una sonda optoelectrònica (basada en la tècnica del 2-Colors) tant en un motor òptic DI com en un motor poli-cilíndric DI de producció en serie. En aquest estudi s'han obtingut valors de intensitat espectral emesa per la sutja i posteriorment, la radiació total emesa per les partícules de sutja en tot el espectre.
Com s'ha citat amb anterioritat, les partícules de sutja son les principals responsables de la transferència de calor per radiació, a més de un del principals agents contaminants emès per els motors dièsel. Les emissions de sutja son el resultat de dos processos antagonistes: la formació i la oxidació de sutja. Els mecanismes de formació de sutja es discuteixen àmpliament en la literatura. No obstant això, existeixen deficiències pel que fa al coneixement de l'oxidació de sutja. Per tant, l'objectiu d'aquesta secció ha sigut avaluar l'impacte del procés de mescla i la temperatura del gas sobre el procés d'oxidació de sutja durant l'última part de la combustió sota condicions reals d'operació.
Finalment, i en base als resultats i coneixements adquirits fins aquest moment, s'ha desenvolupat un model que permet predir les perdudes de calor però radiació per a un raig dièsel. El model esta basat en tres sub-models: model de raig, el qual analitza i caracteritza la estructura interna del raig en termes de mescla i combustió en un procés de injecció amb resolució temporal i espacial. Un model de sutja, en el qual els resultats es justifiquen en funció del procés de formació i oxidació de la sutja. La cohesió d'aquests dos sub-models s'utilitza per obtindre els valors d'entrada al model de radiació, amb el que s'obté els valors de transferència de calor per radiació per a una flama dièsel. / In the last two decades engine research has been mainly focused on reducing pollutant emissions and increasing efficiency. These facts together with growing awareness about the impacts of climate change are leading to an increase in the importance of thermal efficiency over other criteria in the design of internal combustion engines (ICE). To achieve the objective, there are different strategies to apply. The heat transfer to the combustion chamber walls can be considered as one of the main sources of indicated efficiency diminution. In particular, in modern direct-injection diesel engines, the radiation emission from soot particles can constitute a significant component of the efficiency losses. In this context, the main objective of the thesis is framed: to contribute to the understanding of the radiation heat transfer in DI diesel combustion together with the improvement of the knowledge in the soot formation-oxidation processes. The work has been based on experimental results through the optical technique application in different types of engine and on simulated results from validated one-dimensional models.
In the first part of experimental results, the amount of energy lost to soot radiation relative to the input fuel chemical energy has been evaluated by means of the optoelectronic probe application (based on the 2-Color technique) in both an optical engine DI and a production 4-cylinder DI engine. In this study, the values of soot spectral intensity emitted have been obtained and later, the total radiation emitted by the soot particles in the whole spectrum.
As mentioned above, soot particles are the main responsible for the radiation heat transfer, in addition to one of the important concern in meeting emissions regulations. Soot emissions are the result of two competing processes: soot formation and soot oxidation. Mechanisms of soot formation are discussed extensively in the literature. However, there are deficiencies in the knowledge of soot oxidation. Therefore, the objective of this section has been to evaluate the impact of mixing process and bulk gas temperature on late-cycle soot oxidation process under real operating conditions.
Finally, based on the results and knowledge acquired, a model able to predict heat losses by radiation for a spray diesel has been developed. The model is based on three sub-models: spray model, which analyzes and characterizes the internal spray structure in terms of mixing and combustion process with temporal and spatial resolution. A soot model, in which the results have been justified according to soot formation and oxidation processes. The link of these two sub-models has been used to obtain the input values to the radiation model, which the radiation heat transfer values for a diesel flame are obtained. / Villalta Lara, D. (2018). RADIATION HEAT TRANSFER IN DIRECT-INJECTION DIESEL ENGINES [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/114793
|
9 |
CFD Simulation of Soot Formation and Flame RadiationLautenberger, Christopher W. 15 January 2002 (has links)
The Fire Dynamics Simulator (FDS) code recently developed by the National Institute of Standards and Technology (NIST) is particularly well-suited for use by fire protection engineers for studying fire behavior. It makes use of Large Eddy Simulation (LES) techniques to directly calculate the large-scale fluid motions characteristic of buoyant turbulent diffusion flames. However, the underlying model needs further development and validation against experiment in the areas of soot formation/oxidation and radiation before it can be used to calculate flame heat transfer and predict the burning of solid or liquid fuels. WPI, Factory Mutual Research, and NIST have undertaken a project to make FDS capable of calculating the flame heat transfer taking place in fires of hazardous scale. The temperatures predicted by the FDS code were generally too high on the fuel side and too low on the oxidant side when compared to experimental data from small-scale laminar diffusion flames. For this reason, FDS was reformulated to explicitly solve the conservation of energy equation in terms of total (chemical plus sensible) enthalpy. This allowed a temperature correction to be applied by removing enthalpy from the fuel side and adding it to the oxidant side. This reformulation also has advantages when using probability density function (PDF) techniques in larger turbulent flames because the radiatively-induced nonadiabaticity is tracked locally with each fluid parcel. The divergence of the velocity field, required to obtain the flow-induced perturbation pressure, is calculated from an expression derived from the continuity equation. A new approach to soot modeling in diffusion flames was developed and added to the FDS code. The soot model postulated as part of this work differs from others because it is intended for engineering calculations of soot formation and oxidation in an arbitrary hydrocarbon fuel. Previous models contain several fuel-specific constants that generally can only be determined by calibration experiments in laminar flames. The laminar smoke point height, an empirical measure of a fuel?s sooting propensity, is used in the present model to characterize fuel-specific soot chemistry. Two separate mechanisms of soot growth are considered. The first is attributed to surface growth reactions and is dependent on the available surface area of the soot aerosol. The second is attributed to homogeneous gas-phase reactions and is independent of the available soot surface area. Soot oxidation is treated empirically in a global (fuel-independent) manner. The local soot concentration calculated by the model drives the rate of radiant emission. Calibration against detailed soot volume fraction and temperature profiles in laminar axisymmetric flames was performed. This calibration showed that the general approach postulated here is viable, yet additional work is required to enhance and simplify the model. The essential mathematics for modeling larger turbulent flames have also been developed and incorporated into the FDS code. An assumed-beta PDF is used to approximate the effect of unresolved subgrid-scale fluctuations on the grid-scale soot formation/oxidation rate. The intensity of subgrid-scale fluctuations is quantified using the principle of scale similarity. The modified FDS code was used to calculate the evolution of soot in buoyant turbulent diffusion flames. This exercise indicated that the subgrid-scale fluctuations are quantitatively important in LES of turbulent buoyant diffusion flames, although no comparison of prediction and experiment was performed for the turbulent case.
|
10 |
Catalyseurs conducteurs ioniques pour l'oxydation des suies / Ionic conducting ceramics for soot oxidationObeid, Emil 26 September 2013 (has links)
Cette étude a pour finalité le développement d'une nouvelle famille de catalyseurs pour la combustion des suies Diesel afin de produire des filtres à particules (FAP) à régénération continue basse température. En effet, les régénérations périodiques des FAP actuellement commercialisés, engendrent une surconsommation plus ou moins élevée en carburant. Les catalyseurs étudiés sont des céramiques conductrices par les ions oxygènes et exempts de métal noble. L'ensemble de ces études a permis d'aboutir à plusieurs conclusions majeures. Les oxygènes actifs pour oxyder les particules de suies à basse température sont les oxygènes contenus dans le catalyseur. L'oxydation de la suie a donc lieu à l'interface solide/solide : suie/catalyseur. Un mécanisme de type électrochimique comme dans une pile à combustible mais à l'échelle nanométrique a été proposé : l'oxydation de la suie représente la réaction anodique qui se déroule aux points de contact suie / 8-YSZ, les électrons produits diffusent à travers les particules de suie vers les point triples entre les particules de suie (conductrices électroniques), la phase gaz (présence d'oxygène) et 8-YSZ (conducteur ionique) où se déroule la réaction cathodique d'incorporation de l'oxygène gazeux dans le matériau. Les paramètres clés qui gouvernent l'activité catalytique sont la surface de contact suie/catalyseur et donc la granulométrie de la poudre de catalyseur ainsi que la pression partielle d'oxygène dans la phase gaz et la mobilité de l'oxygène dans le catalyseur / This study aims to develop a new family of catalysts for diesel soot combustion to produce and optimize self-DPFs, based on ionic conducting ceramics, able to continuously burn soot particulates at low temperatures without fuel overconsumption and without the use of noble metals. The investigated catalysts are oxygen ionically conducting ceramics. Yttria stabilized Zirconia (8-YSZ containing 8 mol% of yttria) was chosen as the reference catalyst due to its high thermal and chemical stability and good ionic conductivity. A set of experiments was implemented to vary different parameters that can influence the reactivity of the reference catalyst. All of these studies have resulted in several major conclusions. Oxygen species active to oxidize soot particles at low temperature are those contained in the catalyst. An electrochemical type mechanism as in a fuel cell but at the nanoscale was proposed: the soot oxidation represents the anodic reaction which occurs at the contact points soot / 8-YSZ/O2 (gas) electrons are diffused through soot particles to triple points between the soot particles (electronic conductor), the gas phase (presence of oxygen) and 8-YSZ (ion conductor) where the cathodic reaction takes place with the incorporation of gaseous oxygen into the ceramic. The key parameters that influence the catalytic activity of 8-YSZ are soot / catalyst contact and thus the agglomerates size of the catalyst powder, the oxygen partial pressure in the gas phase and the mobility of oxygen in the catalyst
|
Page generated in 0.1363 seconds