• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Monolithic sorbents for microscale separations

Doneanu, Angela 28 April 2005 (has links)
Over the last decade, the miniaturization of analytical systems has become an increasingly important and interesting research area. Miniaturized systems offer many advantages, including reduced reagent and sample consumption, shorter analysis times, portability and disposability. This dissertation describes novel approaches in this direction, focusing on two areas: the miniaturization of existing column chromatographic systems and the development of microfluidic systems in which the separation is performed in a channel on a microchip. A new type of methacrylate-based monolithic capillary columns for liquid chromatography and capillary electrochromatography were prepared within the confines of fused-silica tubing using Starburst dendrimers to affect porosity. The polyamidoamine (PAMAM) dendrimers were incorporated into a solution of functionalized monomer, cross-linker, solvents, and polymerization initiator. Thermal polymerization, followed by the removal of solvent and dendrimers, produced a continuous rod of polymer with uniform porosity. Different column porosities were obtained by varying the amount of the dendrimer template. The chromatographic performance of these monolithic columns was evaluated using a peptides mixture obtained by tryptic digestion of chicken egg lysozyme. A distinct advantage of polymer monolithic stationary phases over conventional packed chromatographic beds is the ability to prepare them easily and rapidly via free radical polymerization within the channels of a microfluidic device. In this work, continuous polymeric beds were prepared within a channel of three different microchip substrates: glass, poly(dimethylsiloxane) and polycarbonate. The methacrylate-based monolith was cast in-situ via UV-initiated polymerization. The functionalization of the inner wall of the channel with methacryloyl groups enabled the covalent binding of the monolith to the wall. The morphology of the wall-anchored monolith was studied by SEM of chip sections, and by SEM of an extruded segment of non-anchored monolith from a separate chip. / Graduation date: 2005

Page generated in 0.3018 seconds